The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 201 –
216 of
216
Suppose E is fully symmetric Banach function space on (0,1) or (0,∞) or a fully symmetric Banach sequence space. We give necessary and sufficient conditions on f ∈ E so that its orbit Ω(f) is the closed convex hull of its extreme points. We also give an application to symmetrically normed ideals of compact operators on a Hilbert space.
The space of all order continuous linear functionals on an Orlicz space defined by an arbitrary (not necessarily convex) Orlicz function is described.
Let L-phi be an Orlicz space defined by a Young function phi over a sigma-finite measure space, and let phi* denote the complementary function in the sense of Young. We give a characterization of the Mackey topology tau(L*,L-phi*) in terms of some family of norms defined by some regular Young functions. Next we describe order continuous (=absolutely continuous) Riesz seminorms on L-phi, and obtain a criterion for relative sigma(L-phi,L-phi*)-compactness in L-phi. As an application we get a representation...
We study order convexity and concavity of quasi-Banach Lorentz spaces , where 0 < p < ∞ and w is a locally integrable positive weight function. We show first that contains an order isomorphic copy of . We then present complete criteria for lattice convexity and concavity as well as for upper and lower estimates for . We conclude with a characterization of the type and cotype of in the case when is a normable space.
Let ϕ and ψ be functions defined on [0,∞) taking the value zero at zero and with non-negative continuous derivative. Under very mild extra assumptions we find necessary and sufficient conditions for the fractional maximal operator , associated to an open bounded set Ω, to be bounded from the Orlicz space into , 0 ≤ α < n. For functions ϕ of finite upper type these results can be extended to the Hilbert transform f̃ on the one-dimensional torus and to the fractional integral operator , 0...
We study the sequence , which is solution of in an open bounded set of and on , when tends to a measure concentrated on a set of null Orlicz-capacity. We consider the relation between this capacity and the -function , and prove a non-existence result.
We study the sequence un, which is solution
of in Ω an
open bounded
set of RN and un= 0 on ∂Ω, when fn tends to a
measure concentrated on a set of null Orlicz-capacity. We consider the relation
between this capacity and the N-function Φ, and prove a non-existence
result.
Let be a von Neumann algebra, let be a weight on and let be -function satisfying the -condition. In this paper we study Orlicz spaces, associated with , and .
Let M be the Hardy-Littlewood maximal operator defined by:Mf(x) = supx ∈ Q 1/|Q| ∫Q |f| dx, (f ∈ Lloc(Rn)),where the supreme is taken over all cubes Q containing x and |Q| is the Lebesgue measure of Q. In this paper we characterize the Orlicz spaces Lφ*, associated to N-functions φ, such that M is bounded in Lφ*. We prove that this boundedness is equivalent to the complementary N-function ψ of φ satisfying the Δ2-condition in [0,∞), that is, sups>0 ψ(2s) / ψ(s) < ∞.
We prove basic properties of Orlicz-Morrey spaces and give a necessary and sufficient condition for boundedness of the Hardy-Littlewood maximal operator M from one Orlicz-Morrey space to another. For example, if f ∈ L(log L)(ℝⁿ), then Mf is in a (generalized) Morrey space (Example 5.1). As an application of boundedness of M, we prove the boundedness of generalized fractional integral operators, improving earlier results of the author.
Currently displaying 201 –
216 of
216