The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 3

Displaying 41 – 47 of 47

Showing per page

Intrinsic characterizations of distribution spaces on domains

V. Rychkov (1998)

Studia Mathematica

We give characterizations of Besov and Triebel-Lizorkin spaces B p q s ( ) and F p q s ( ) in smooth domains n via convolutions with compactly supported smooth kernels satisfying some moment conditions. The results for s ∈ ℝ, 0 < p,q ≤ ∞ are stated in terms of the mixed norm of a certain maximal function of a distribution. For s ∈ ℝ, 1 ≤ p ≤ ∞, 0 < q ≤ ∞ characterizations without use of maximal functions are also obtained.

Isomorphism theorems for some parabolic initial-boundary value problems in Hörmander spaces

Valerii Los, Aleksandr Murach (2017)

Open Mathematics

In Hörmander inner product spaces, we investigate initial-boundary value problems for an arbitrary second order parabolic partial differential equation and the Dirichlet or a general first-order boundary conditions. We prove that the operators corresponding to these problems are isomorphisms between appropriate Hörmander spaces. The regularity of the functions which form these spaces is characterized by a pair of number parameters and a function parameter varying regularly at infinity in the sense...

Currently displaying 41 – 47 of 47

Previous Page 3