Displaying 581 – 600 of 1286

Showing per page

Non-smooth atomic decompositions of anisotropic function spaces and some applications

Susana D. Moura, Iwona Piotrowska, Mariusz Piotrowski (2007)

Studia Mathematica

The main purpose of the present paper is to extend the theory of non-smooth atomic decompositions to anisotropic function spaces of Besov and Triebel-Lizorkin type. Moreover, the detailed analysis of the anisotropic homogeneity property is carried out. We also present some results on pointwise multipliers in special anisotropic function spaces.

Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities

Robert Černý (2012)

Open Mathematics

Let Ω ⊂ ℝn, n ≥ 2, be a bounded domain and let α < n − 1. Motivated by Theorem I.6 and Remark I.18 of [Lions P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1985, 1(1), 145–201] and by the results of [Černý R., Cianchi A., Hencl S., Concentration-Compactness Principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-011-0220-3], we give a sharp estimate of the...

Null controllability of nonlinear convective heat equations

Sebastian Aniţa, Viorel Barbu (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The internal and boundary exact null controllability of nonlinear convective heat equations with homogeneous Dirichlet boundary conditions are studied. The methods we use combine Kakutani fixed point theorem, Carleman estimates for the backward adjoint linearized system, interpolation inequalities and some estimates in the theory of parabolic boundary value problems in Lk.

Nuovi risultati sulla semicontinuità inferiore di certi funzionali integrali

Luigi Ambrosio (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Given an open subset Ω of n and a Borel function f : Ω × × n [ 0 , + [ , conditions on f are given which assure the lower semicontinuity of the functional Ω f ( x , u , D u ) d x with respect to different topologies.

Obata’s Rigidity Theorem for Metric Measure Spaces

Christian Ketterer (2015)

Analysis and Geometry in Metric Spaces

We prove Obata’s rigidity theorem for metric measure spaces that satisfy a Riemannian curvaturedimension condition. Additionally,we show that a lower bound K for the generalizedHessian of a sufficiently regular function u holds if and only if u is K-convex. A corollary is also a rigidity result for higher order eigenvalues.

On a definition of seminorm in Ws,p (Γ).

Fabio Gastaldi, Gianni Gilardi (1989)

Revista Matemática de la Universidad Complutense de Madrid

A definition of seminorm in the Sobolev space Ws,p (Γ) on a smooth compact manifold Gamma without boundary, using a localization procedure without partition of unity.

On a generalization of Nikolskij's extension theorem in the case of two variables

Alexander Ženíšek (2003)

Applications of Mathematics

A modification of the Nikolskij extension theorem for functions from Sobolev spaces H k ( Ω ) is presented. This modification requires the boundary Ω to be only Lipschitz continuous for an arbitrary k ; however, it is restricted to the case of two-dimensional bounded domains.

Currently displaying 581 – 600 of 1286