Nonlinear perturbations of linear non-invertible boundary value problems in function spaces of type and
The main purpose of the present paper is to extend the theory of non-smooth atomic decompositions to anisotropic function spaces of Besov and Triebel-Lizorkin type. Moreover, the detailed analysis of the anisotropic homogeneity property is carried out. We also present some results on pointwise multipliers in special anisotropic function spaces.
Let Ω ⊂ ℝn, n ≥ 2, be a bounded domain and let α < n − 1. Motivated by Theorem I.6 and Remark I.18 of [Lions P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1985, 1(1), 145–201] and by the results of [Černý R., Cianchi A., Hencl S., Concentration-Compactness Principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-011-0220-3], we give a sharp estimate of the...
The internal and boundary exact null controllability of nonlinear convective heat equations with homogeneous Dirichlet boundary conditions are studied. The methods we use combine Kakutani fixed point theorem, Carleman estimates for the backward adjoint linearized system, interpolation inequalities and some estimates in the theory of parabolic boundary value problems in Lk.
Given an open subset of and a Borel function , conditions on are given which assure the lower semicontinuity of the functional with respect to different topologies.
We prove Obata’s rigidity theorem for metric measure spaces that satisfy a Riemannian curvaturedimension condition. Additionally,we show that a lower bound K for the generalizedHessian of a sufficiently regular function u holds if and only if u is K-convex. A corollary is also a rigidity result for higher order eigenvalues.
We consider elliptic nonlinear equations in a separable Hilbert space and their solutions in spaces of Sobolev type.
A definition of seminorm in the Sobolev space Ws,p (Γ) on a smooth compact manifold Gamma without boundary, using a localization procedure without partition of unity.
A modification of the Nikolskij extension theorem for functions from Sobolev spaces is presented. This modification requires the boundary to be only Lipschitz continuous for an arbitrary ; however, it is restricted to the case of two-dimensional bounded domains.