The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2081 – 2100 of 11160

Showing per page

Complexifications of real Banach spaces, polynomials and multilinear maps

Gustavo Muñoz, Yannis Sarantopoulos, Andrew Tonge (1999)

Studia Mathematica

We give a unified treatment of procedures for complexifying real Banach spaces. These include several approaches used in the past. We obtain best possible results for comparison of the norms of real polynomials and multilinear mappings with the norms of their complex extensions. These estimates provide generalizations and show sharpness of previously obtained inequalities.

Composition in ultradifferentiable classes

Armin Rainer, Gerhard Schindl (2014)

Studia Mathematica

We characterize stability under composition of ultradifferentiable classes defined by weight sequences M, by weight functions ω, and, more generally, by weight matrices , and investigate continuity of composition (g,f) ↦ f ∘ g. In addition, we represent the Beurling space ( ω ) and the Roumieu space ω as intersection and union of spaces ( M ) and M for associated weight sequences, respectively.

Composition of (E,2)-summing operators

Andreas Defant, Mieczysław Mastyło (2003)

Studia Mathematica

The Banach operator ideal of (q,2)-summing operators plays a fundamental role within the theory of s-number and eigenvalue distribution of Riesz operators in Banach spaces. A key result in this context is a composition formula for such operators due to H. König, J. R. Retherford and N. Tomczak-Jaegermann. Based on abstract interpolation theory, we prove a variant of this result for (E,2)-summing operators, E a symmetric Banach sequence space.

Composition of some singular Fourier integral operators and estimates for restricted X -ray transforms

Allan Greenleaf, Gunther Uhlmann (1990)

Annales de l'institut Fourier

We establish a composition calculus for Fourier integral operators associated with a class of smooth canonical relations C ( T * X 0 ) × ( T * Y 0 ) . These canonical relations, which arise naturally in integral geometry, are such that π : C T * Y is a Whitney fold and ρ : C T * X is a blow-down mapping. If A I m ( C ) , B I m ' ( C t ) , then B A I m + m ' , 0 ( Δ , Λ ) a class of pseudodifferential operators with singular symbols. From this follows L 2 boundedness of A with a loss of 1/4 derivative.

Currently displaying 2081 – 2100 of 11160