Connectedness and compactness of weak efficient solutions for set-valued vector equilibrium problems.
Some relationships between the Kuratowski's measure of noncompactness, the ball measure of noncompactness and the δ-separation of the points of a set are studied in special classes of Banach spaces. These relations are applied to compare operators which are contractive for these measures.
We introduce and study the notions of w*-approximate Connes amenability and pseudo-Connes amenability for dual Banach algebras. We prove that the dual Banach sequence algebra ℓ¹ is not w*-approximately Connes amenable. We show that in general the concepts of pseudo-Connes amenability and Connes amenability are distinct. Moreover the relations between these new notions are also discussed.
We obtain conditions for L₂ and strong consistency of the least square estimators of the coefficients in a multi-linear regression model with a stationary random noise. For given non-random regressors, we obtain conditions which ensure L₂-consistency for all wide sense stationary noise sequences with spectral measure in a given class. The condition for the class of all noises with continuous (i.e., atomless) spectral measures yields also -consistency when the noise is strict sense stationary with...
A system of one-dimensional linear parabolic equations coupled by boundary conditions which include additional state variables, is considered. This system describes an electric circuit with distributed parameter lines and lumped capacitors all connected through a resistive multiport. By using the monotony in a space of the form , one proves the existence and uniqueness of a variational solution, if reasonable engineering hypotheses are fulfilled.
We prove that for each dense non-compact linear operator S: X → Y between Banach spaces there is a linear operator T: Y → c₀ such that the operator TS: X → c₀ is not compact. This generalizes the Josefson-Nissenzweig Theorem.
In this paper, we propose and analyse an iterative algorithm for the approximation of a common solution for a finite family of k-strict pseudocontractions and two finite families of generalized equilibrium problems in the setting of Hilbert spaces. Strong convergence results of the proposed iterative algorithm together with some applications to solve the variational inequality problems are established in such setting. Our results generalize and improve various existing results in the current literature....
Given a smooth family of vector fields satisfying Chow-Hörmander’s condition of step 2 and a regularity assumption, we prove that the Sobolev spaces of fractional order constructed by the standard functional analysis can actually be “computed” with a simple formula involving the sub-riemannian distance.Our approach relies on a microlocal analysis of translation operators in an anisotropic context. It also involves classical estimates of the heat-kernel associated to the sub-elliptic Laplacian.