The search session has expired. Please query the service again.
Displaying 201 –
220 of
250
We show that a B-space E has the (CRP) if and only if any dominated operator T from C[0, 1] into E is compact. Hence we apply this result to prove that c0 embeds isomorphically into the B-space of all compact operators from C[0, 1] into an arbitrary B-space E without the (CRP).
Given a positive Banach-Saks operator T between two Banach lattices E and F, we give sufficient conditions on E and F in order to ensure that every positive operator dominated by T is Banach-Saks. A counterexample is also given when these conditions are dropped. Moreover, we deduce a characterization of the Banach-Saks property in Banach lattices in terms of disjointness.
We consider majorization problems in the non-commutative setting. More specifically, suppose E and F are ordered normed spaces (not necessarily lattices), and 0 ≤ T ≤ S in B(E,F). If S belongs to a certain ideal (for instance, the ideal of compact or Dunford-Pettis operators), does it follow that T belongs to that ideal as well? We concentrate on the case when E and F are C*-algebras, preduals of von Neumann algebras, or non-commutative function spaces. In particular, we show that, for C*-algebras...
We recall from [9] the definition and properties of an algebra cone C of a real or complex Banach algebra A. It can be shown that C induces on A an ordering which is compatible with the algebraic structure of A. The Banach algebra A is then called an ordered Banach algebra. An important property that the algebra cone C may have is that of normality. If C is normal, then the order structure and the topology of A are reconciled in a certain way. Ordered Banach algebras have interesting spectral properties....
This paper is a continuation of [5] and provides necessary and sufficient conditions for double exponential integrability of the Bessel potential of functions from suitable (generalized) Lorentz-Zygmund spaces. These results are used to establish embedding theorems for Bessel potential spaces which extend Trudinger's result.
We present a user-friendly version of a double operator integration theory which still
retains a capacity for many useful applications. Using recent results from the latter
theory applied in noncommutative geometry, we derive applications to analogues of the
classical Heinz inequality, a simplified proof of a famous inequality of
Birman-Koplienko-Solomyak and also to the Connes-Moscovici inequality. Our methods are
sufficiently strong to treat these...
Let and let be pseudo-differential operators with symbols , where , and . Let , be weights in Muckenhoupt classes , for some . We establish a two-weight inequality for commutators generated by pseudo-differential operators with weighted BMO functions , namely, the commutator is bounded from into . Furthermore, the range of can be extended to the whole .
In this note we establish a vector-valued version of Beurling’s theorem (the Lax-Halmos theorem) for the polydisc. As an application of the main result, we provide necessary and sufficient conditions for the “weak” completion problem in .
We study representations of Banach algebras on reflexive Banach spaces. Algebras which admit such representations which are bounded below seem to be a good generalisation of Arens regular Banach algebras; this class includes dual Banach algebras as defined by Runde, but also all group algebras, and all discrete (weakly cancellative) semigroup algebras. Such algebras also behave in a similar way to C*- and W*-algebras; we show that interpolation space techniques can be used in place of GNS type arguments....
In this paper we establish a dual weak convergence theorem for the Ishikawa iteration process for nonexpansive mappings in a reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm, and then apply this result to study the problem of the weak convergence of the iteration process.
Currently displaying 201 –
220 of
250