The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2201 – 2220 of 11160

Showing per page

Continuity of generalized inverses in Banach algebras

Steffen Roch, Bernd Silbermann (1999)

Studia Mathematica

The main topic of the paper is the continuity of several kinds of generalized inversion of elements in a Banach algebra with identity. We introduce the notion of asymptotic generalized invertibility and completely characterize sequences of elements with this property. Based on this result, we derive continuity criteria which generalize the well known criteria from operator theory.

Continuity of hysteresis operators in Sobolev spaces

Pavel Krejčí, Vladimír Lovicar (1990)

Aplikace matematiky

We prove that the classical Prandtl, Ishlinskii and Preisach hysteresis operators are continuous in Sobolev spaces W 1 , p ( 0 , T ) for 1 p < + , (localy) Lipschitz continuous in W 1 , 1 ( 0 , T ) and discontinuous in W 1 , ( 0 , T ) for arbitrary T > 0 . Examples show that this result is optimal.

Continuity of Pseudo-differential Operators on Bessel And Besov Spaces

Moussai, Madani (2001)

Serdica Mathematical Journal

We study the continuity of pseudo-differential operators on Bessel potential spaces Hs|p (Rn ), and on the corresponding Besov spaces B^(s,q)p (R ^n). The modulus of continuity ω we use is assumed to satisfy j≥0, ∑ [ω(2−j )Ω(2j )]2 < ∞ where Ω is a suitable positive function.

Continuity of the Drazin inverse II

J. Koliha, V. Rakočević (1998)

Studia Mathematica

We study the continuity of the generalized Drazin inverse for elements of Banach algebras and bounded linear operators on Banach spaces. This work extends the results obtained by the second author on the conventional Drazin inverse.

Continuity of the non-convex play operator in the space of rectifiable curves

Jana Kopfová, Vincenzo Recupero (2023)

Applications of Mathematics

We prove that the vector play operator with a uniformly prox-regular characteristic set of constraints is continuous with respect to the B V -norm and to the B V -strict metric in the space of rectifiable curves, i.e., in the space of continuous functions of bounded variation. We do not assume any further regularity of the characteristic set. We also prove that the non-convex play operator is rate independent.

Continuity versus boundedness of the spectral factorization mapping

Holger Boche, Volker Pohl (2008)

Studia Mathematica

This paper characterizes the Banach algebras of continuous functions on which the spectral factorization mapping 𝔖 is continuous or bounded. It is shown that 𝔖 is continuous if and only if the Riesz projection is bounded on the algebra, and that 𝔖 is bounded only if the algebra is isomorphic to the algebra of continuous functions. Consequently, 𝔖 can never be both continuous and bounded, on any algebra under consideration.

Continuity versus nonexistence for a class of linear stochastic Cauchy problems driven by a Brownian motion

Johanna Dettweiler, J.M.A.M. van Neerven (2006)

Czechoslovak Mathematical Journal

Let A = d / d θ denote the generator of the rotation group in the space C ( Γ ) , where Γ denotes the unit circle. We show that the stochastic Cauchy problem d U ( t ) = A U ( t ) + f d b t , U ( 0 ) = 0 , ( 1 ) where b is a standard Brownian motion and f C ( Γ ) is fixed, has a weak solution if and only if the stochastic convolution process t ( f * b ) t has a continuous modification, and that in this situation the weak solution has a continuous modification. In combination with a recent result of Brzeźniak, Peszat and Zabczyk it follows that (1) fails to have a weak solution for all...

Currently displaying 2201 – 2220 of 11160