Inverting the p-harmonic operator.
We show that if the set of all bounded strongly continuous cosine families on a Banach space X is treated as a metric space under the metric of the uniform convergence associated with the operator norm on the space 𝓛(X) of all bounded linear operators on X, then the isolated points of this set are precisely the scalar cosine families. By definition, a scalar cosine family is a cosine family whose members are all scalar multiples of the identity operator. We also show that if the sets of all bounded...
Let T be a bounded linear operator on a complex Hilbert space H. In this paper we introduce a new class, denoted *, of operators satisfying where k is a natural number, and we prove basic structural properties of these operators. Using these results, we also show that if E is the Riesz idempotent for a non-zero isolated point μ of the spectrum of T ∈ *, then E is self-adjoint and EH = ker(T-μ) = ker(T-μ)*. Some spectral properties are also presented.
We investigate isometric composition operators on the weighted Dirichlet space with standard weights , . The main technique used comes from Martín and Vukotić who completely characterized the isometric composition operators on the classical Dirichlet space . We solve some of these but not in general. We also investigate the situation when is equipped with another equivalent norm.
The relationships between the JB*-triple structure of a complex spin factor S and the structure of the Hilbert space H associated to S are discussed. Every surjective linear isometry L of S can be uniquely represented in the form L(x) = mu.U(x) for some conjugation commuting unitary operator U on H and some mu belonging to C, |mu|=1. Automorphisms of S are characterized as those linear maps (continuity not assumed) that preserve minimal tripotents in S and the orthogonality relations among them.
We show that if T is an isometry (as metric spaces) from an open subgroup of the group of invertible elements in a unital semisimple commutative Banach algebra A onto a open subgroup of the group of invertible elements in a unital Banach algebra B, then is an isometrical group isomorphism. In particular, extends to an isometrical real algebra isomorphism from A onto B.