Displaying 241 – 260 of 349

Showing per page

Inverse problems in spaces of measures

Kristian Bredies, Hanna Katriina Pikkarainen (2013)

ESAIM: Control, Optimisation and Calculus of Variations

The ill-posed problem of solving linear equations in the space of vector-valued finite Radon measures with Hilbert space data is considered. Approximate solutions are obtained by minimizing the Tikhonov functional with a total variation penalty. The well-posedness of this regularization method and further regularization properties are mentioned. Furthermore, a flexible numerical minimization algorithm is proposed which converges subsequentially in the weak* sense and with rate 𝒪(n-1)...

Inverse rate-dependent Prandtl-Ishlinskii operators and applications

Mohammad Al Janaideh, Pavel Krejčí, Giselle A. Monteiro (2023)

Applications of Mathematics

In the past years, we observed an increased interest in rate-dependent hysteresis models to characterize complex time-dependent nonlinearities in smart actuators. A natural way to include rate-dependence to the Prandtl-Ishlinskii model is to consider it as a linear combination of play operators whose thresholds are functions of time. In this work, we propose the extension of the class of rate-dependent Prandtl-Ishlinskii operators to the case of a whole continuum of play operators with time-dependent...

Inverses of generators of nonanalytic semigroups

Ralph deLaubenfels (2009)

Studia Mathematica

Suppose A is an injective linear operator on a Banach space that generates a uniformly bounded strongly continuous semigroup e t A t 0 . It is shown that A - 1 generates an O ( 1 + τ ) A ( 1 - A ) - 1 -regularized semigroup. Several equivalences for A - 1 generating a strongly continuous semigroup are given. These are used to generate sufficient conditions on the growth of e t A t 0 , on subspaces, for A - 1 generating a strongly continuous semigroup, and to show that the inverse of -d/dx on the closure of its image in L¹([0,∞)) does not generate a strongly...

Inversion d’un opérateur de Toeplitz tronqué à symbole matriciel et théorèmes-limite de Szegö

Jean Chanzy (2006)

Annales mathématiques Blaise Pascal

Ce travail est une étude théorique d’opérateurs de Toeplitz dont le symbole est une fonction matricielle régulière définie positive partout sur le tore à une dimension. Nous proposons d’abord une formule d’inversion exacte pour un opérateur de Toeplitz à symbole matriciel, démontrée au moyen d’un théorème établi en annexe et donnant la solution du problème de la prédiction relatif à un passé fini pour un processus stationnaire du second ordre. Nous établissons ensuite, à partir de cet inverse, un...

Invertibility preserving linear mappings into M₂(ℂ)

M. H. Shirdarreh Haghighi (2008)

Studia Mathematica

We study discontinuous invertibility preserving linear mappings from a Banach algebra into the algebra of n × n matrices and give an explicit representation of such a mapping when n = 2.

Invertible and normal composition operators on the Hilbert Hardy space of a half–plane

Valentin Matache (2016)

Concrete Operators

Operators on function spaces of form Cɸf = f ∘ ɸ, where ɸ is a fixed map are called composition operators with symbol ɸ. We study such operators acting on the Hilbert Hardy space over the right half-plane and characterize the situations when they are invertible, Fredholm, unitary, and Hermitian. We determine the normal composition operators with inner, respectively with Möbius symbol. In select cases, we calculate their spectra, essential spectra, and numerical ranges.

Currently displaying 241 – 260 of 349