Displaying 281 – 300 of 349

Showing per page

Isometries of Musielak-Orlicz spaces II

J. Jamison, A. Kamińska, Pei-Kee Lin (1993)

Studia Mathematica

A characterization of isometries of complex Musielak-Orlicz spaces L Φ is given. If L Φ is not a Hilbert space and U : L Φ L Φ is a surjective isometry, then there exist a regular set isomorphism τ from (T,Σ,μ) onto itself and a measurable function w such that U(f) = w ·(f ∘ τ) for all f L Φ . Isometries of real Nakano spaces, a particular case of Musielak-Orlicz spaces, are also studied.

Isometries of the unitary groups in C*-algebras

Osamu Hatori (2014)

Studia Mathematica

We give a complete description of the structure of surjective isometries between the unitary groups of unital C*-algebras. While any surjective isometry between the unitary groups of von Neumann algebras can be extended to a real-linear Jordan *-isomorphism between the relevant von Neumann algebras, this is not the case for general unital C*-algebras. We show that the unitary groups of two C*-algebras are isomorphic as metric groups if and only if the C*-algebras are isomorphic in the sense that...

Isomorphic and isometric copies of ( Γ ) in duals of Banach spaces and Banach lattices

Marek Wójtowicz (2006)

Commentationes Mathematicae Universitatis Carolinae

Let X and E be a Banach space and a real Banach lattice, respectively, and let Γ denote an infinite set. We give concise proofs of the following results: (1) The dual space X * contains an isometric copy of c 0 iff X * contains an isometric copy of , and (2) E * contains a lattice-isometric copy of c 0 ( Γ ) iff E * contains a lattice-isometric copy of ( Γ ) .

Isomorphic Schauder decompositions in certain Banach spaces

Vitalii Marchenko (2014)

Open Mathematics

We extend a theorem of Kato on similarity for sequences of projections in Hilbert spaces to the case of isomorphic Schauder decompositions in certain Banach spaces. To this end we use ℓψ-Hilbertian and ∞-Hilbertian Schauder decompositions instead of orthogonal Schauder decompositions, generalize the concept of an orthogonal Schauder decomposition to the case of Banach spaces and introduce the class of Banach spaces with Schauder-Orlicz decompositions. Furthermore, we generalize the notions of type,...

Isomorphisms of AC(σ) spaces

Ian Doust, Michael Leinert (2015)

Studia Mathematica

Analogues of the classical Banach-Stone theorem for spaces of continuous functions are studied in the context of the spaces of absolutely continuous functions introduced by Ashton and Doust. We show that if AC(σ₁) is algebra isomorphic to AC(σ₂) then σ₁ is homeomorphic to σ₂. The converse however is false. In a positive direction we show that the converse implication does hold if the sets σ₁ and σ₂ are confined to a restricted collection of compact sets, such as the set of all simple polygons.

Isomorphisms of some reflexive algebras

Jiankui Li, Zhidong Pan (2008)

Studia Mathematica

Suppose ℒ₁ and ℒ₂ are subspace lattices on complex separable Banach spaces X and Y, respectively. We prove that under certain lattice-theoretic conditions every isomorphism from algℒ₁ to algℒ₂ is quasi-spatial; in particular, if a subspace lattice ℒ of a complex separable Banach space X contains a sequence E i such that ( E i ) X , E i E i + 1 , and i = 1 E i = X then every automorphism of algℒ is quasi-spatial.

Isospectrality for quantum toric integrable systems

Laurent Charles, Álvaro Pelayo, San Vũ Ngoc (2013)

Annales scientifiques de l'École Normale Supérieure

We give a full description of the semiclassical spectral theory of quantum toric integrable systems using microlocal analysis for Toeplitz operators. This allows us to settle affirmatively the isospectral problem for quantum toric integrable systems: the semiclassical joint spectrum of the system, given by a sequence of commuting Toeplitz operators on a sequence of Hilbert spaces, determines the classical integrable system given by the symplectic manifold and commuting Hamiltonians. This type of...

Iterated series and the Hellinger-Toeplitz theorem.

Charles Swartz (1992)

Publicacions Matemàtiques

We show that an iterated double series condition due to Antosik implies the uniform convergence of the double series. An application of Antosik's condition is given to the derivation of a vector form of the Hellinger-Toeplitz theorem.

Iterates and the boundary behavior of the Berezin transform

Jonathan Arazy, Miroslav Engliš (2001)

Annales de l’institut Fourier

Let μ be a measure on a domain Ω in n such that the Bergman space of holomorphic functions in L 2 ( Ω , μ ) possesses a reproducing kernel K ( x , y ) and K ( x , x ) > 0 x Ω . The Berezin transform associated to μ is the integral...

Iterates of a class of discrete linear operators via contraction principle

Octavian Agratini, Ioan A. Rus (2003)

Commentationes Mathematicae Universitatis Carolinae

In this paper we are concerned with a general class of positive linear operators of discrete type. Based on the results of the weakly Picard operators theory our aim is to study the convergence of the iterates of the defined operators and some approximation properties of our class as well. Some special cases in connection with binomial type operators are also revealed.

Iterates of maps which are non-expansive in Hilbert's projective metric

Jeremy Gunawardena, Cormac Walsh (2003)

Kybernetika

The cycle time of an operator on R n gives information about the long term behaviour of its iterates. We generalise this notion to operators on symmetric cones. We show that these cones, endowed with either Hilbert’s projective metric or Thompson’s metric, satisfy Busemann’s definition of a space of non- positive curvature. We then deduce that, on a strictly convex symmetric cone, the cycle time exists for all maps which are non-expansive in both these metrics. We also review an analogue for the Hilbert...

Currently displaying 281 – 300 of 349