Holomorphic C-semigroups and holomorphic semigroups.
In an earlier paper, the first two authors have shown that the convolution of a function continuous on the closure of a Cartan domain and a -invariant finite measure on that domain is again continuous on the closure, and, moreover, its restriction to any boundary face depends only on the restriction of to and is equal to the convolution, in , of the latter restriction with some measure on uniquely determined by . In this article, we give an explicit formula for in terms of ,...
A previous paper was devoted to the construction of non-trivial holomorphic families of holomorphic isometries for the Carathéodory metric of a bounded domain in a complex Banach space, fixing a point in the domain. The present article shows that such a family cannot exist if it contains a strongly continuous one parameter semigroup.
We explore a condition under which the ideal of polynomials generated by an ideal of multilinear mappings between Banach spaces is a global holomorphy type. After some examples and applications, this condition is studied in its own right. A final section provides applications to the ideals formed by multilinear mappings and polynomials which are absolutely (p;q)-summing at every point.
In this paper spaces of entire functions of -holomorphy type of bounded type are introduced and results involving these spaces are proved. In particular, we “construct an algorithm” to obtain a duality result via the Borel transform and to prove existence and approximation results for convolution equations. The results we prove generalize previous results of this type due to B. Malgrange: Existence et approximation des équations aux dérivées partielles et des équations des convolutions. Annales...
Systems of operator-differential equations with hysteresis operators can have unstable equilibrium points with an open basin of attraction. Such equilibria can have homoclinic orbits attached to them, and these orbits are robust. In this paper a population dynamics model with hysteretic response of the prey to variations of the predator is introduced. In this model the prey moves between two patches, and the derivative of the Preisach operator is used to describe the hysteretic flow between the...
(Homogeneous) Markov bridges are (time homogeneous) Markov chains which begin at a given point and end at a given point. The price to pay for preserving the homogeneity is to work with processes with a random life-span. Bridges are studied both for themselves and for their use in describing the transformations of Markov chains: restriction on a random interval, time reversal, time change, various conditionings comprising the confinement in some part of the state space. These bridges lead us to look...
In L2(ℝd; ℂn), we consider a wide class of matrix elliptic second order differential operators ε with rapidly oscillating coefficients (depending on x/ε). For a fixed τ > 0 and small ε > 0, we find approximation of the operator exponential exp(− ετ) in the (L2(ℝd; ℂn) → H1(ℝd; ℂn))-operator norm with an error term of order ε. In this approximation, the corrector is taken...
The paper deals with a scalar diffusion equation where is a Prandtl-Ishlinskii operator and are given functions. In the diffusion or heat conduction equation the linear constitutive relation is replaced by a scalar Prandtl-Ishlinskii hysteresis spatially dependent operator. We prove existence, uniqueness and regularity of solution to the corresponding initial-boundary value problem. The problem is then homogenized by considering a sequence of equations of the above type with spatially periodic...