Local behaviour of the polynomial calculus of operators.
The existence and attractivity of a local center manifold for fully nonlinear parabolic equation with infinite delay is proved with help of a solutions semigroup constructed on the space of initial conditions. The result is applied to the stability problem for a parabolic integrodifferential equation.
We present a local convergence analysis for a family of iterative methods obtained by using decomposition techniques. The convergence of these methods was shown before using hypotheses on up to the seventh derivative although only the first derivative appears in these methods. In the present study we expand the applicability of these methods by showing convergence using only the first derivative. Moreover we present a radius of convergence and computable error bounds based only on Lipschitz constants....
We present a local multi-point convergence analysis for a family of super-Halley methods of high convergence order in order to approximate a solution of a nonlinear equation in a Banach space. Our sufficient convergence conditions involve only hypotheses on the first and second Fréchet derivative of the operator involved. Earlier studies use hypotheses up to the third Fréchet derivative. Numerical examples are also provided.
We use inexact Newton iterates to approximate a solution of a nonlinear equation in a Banach space. Solving a nonlinear equation using Newton iterates at each stage is very expensive in general. That is why we consider inexact Newton methods, where the Newton equations are solved only approximately, and in some unspecified manner. In earlier works [2], [3], natural assumptions under which the forcing sequences are uniformly less than one were given based on the second Fréchet derivative of the operator...
We present a local convergence analysis for two popular third order methods of approximating a solution of a nonlinear equation in a Banach space setting. The convergence ball and error estimates are given for both methods under the same conditions. A comparison is given between the two methods, as well as numerical examples.
We provide local convergence theorems for the convergence of Newton's method to a solution of an equation in a Banach space utilizing only information at one point. It turns out that for analytic operators the convergence radius for Newton's method is enlarged compared with earlier results. A numerical example is also provided that compares our results favorably with earlier ones.
We provide local convergence theorems for Newton’s method in Banach space using outer or generalized inverses. In contrast to earlier results we use hypotheses on the second instead of the first Fréchet-derivative. This way our convergence balls differ from earlier ones. In fact we show that with a simple numerical example that our convergence ball contains earlier ones. This way we have a wider choice of initial guesses than before. Our results can be used to solve undetermined systems, nonlinear...
In the paper local entropy moduli of operators between Banach spaces are introduced. They constitue a generalization of entropy numbers and moduli, and localize these notions in an appropriate way. Many results regarding entropy numbers and moduli can be carried over to local entropy moduli. We investigate relations between local entropy moduli and s-numbers, spectral properties, eigenvalues, absolutely summing operators. As applications, local entropy moduli of identical and diagonal operators...
The Hartree-Fock exchange operator is an integral operator arising in the Hartree-Fock model as well as in some instances of the density functional theory. In a number of applications, it is convenient to approximate this integral operator by a multiplication operator, i.e. by a local potential. This article presents a detailed analysis of the mathematical properties of various local approximations to the nonlocal Hartree-Fock exchange operator including the Slater potential, the optimized effective...
We introduce the notion of a local n-times integrated C-semigroup, which unifies the classes of local C-semigroups, local integrated semigroups and local C-cosine functions. We then study its relations to the C-wellposedness of the (n + 1)-times integrated Cauchy problem and second order abstract Cauchy problem. Finally, a generation theorem for local n-times integrated C-semigroups is given.
On a closed convex set in with sufficiently smooth () boundary, the stop operator is locally Lipschitz continuous from into . The smoothness of the boundary is essential: A counterexample shows that -smoothness is not sufficient.