On operators with the same spectrum
We show a polynomially boundend operator T is similar to a unitary operator if there is a singular unitary operator W and an injection X such that XT = WX. If, in addition, T is of class , then T itself is unitary.
A two-sided sequence with values in a complex unital Banach algebra is a cosine sequence if it satisfies for any n,m ∈ ℤ with c₀ equal to the unity of the algebra. A cosine sequence is bounded if . A (bounded) group decomposition for a cosine sequence is a representation of c as for every n ∈ ℤ, where b is an invertible element of the algebra (satisfying , respectively). It is known that every bounded cosine sequence possesses a universally defined group decomposition, the so-called...
Using interpolation techniques we prove an optimal regularity theorem for the convolution , where is a strongly continuous semigroup in general Banach space. In the case of abstract parabolic problems – that is, when is an analytic semigroup – it lets us recover in a unified way previous regularity results. It may be applied also to some non analytic semigroups, such as the realization of the Ornstein-Uhlenbeck semigroup in , , in which case it yields new optimal regularity results in fractional...
It is known that there is a continuous linear functional on L ∞ which is not narrow. On the other hand, every order-to-norm continuous AM-compact operator from L ∞(μ) to a Banach space is narrow. We study order-to-norm continuous operators acting from L ∞(μ) with a finite atomless measure μ to a Banach space. One of our main results asserts that every order-to-norm continuous operator from L ∞(μ) to c 0(Γ) is narrow while not every such an operator is AM-compact.
Sharp estimates are proven for oscillatory integrals with phase functions Φ(x,y), (x,y) ∈ X × Y, under the assumption that the canonical relation projects to T*X and T*Y with fold singularities.
We study similarity to partial isometries in C*-algebras as well as their relationship with generalized inverses. Most of the results extend some recent results regarding partial isometries on Hilbert spaces. Moreover, we describe partial isometries by means of interpolation polynomials.
In this paper we consider a chain of strings with fixed end points coupled with nearest neighbour interaction potential of exponential type, i.e.We consider the case of “closed chains” i.e. and some and look for solutions which are peirodic in time. The existence of periodic solutions for the dual problem is proved in Orlicz space setting.
In this paper we consider a chain of strings with fixed end points coupled with nearest neighbour interaction potential of exponential type, i.e. We consider the case of “closed chains" i.e. and some and look for solutions which are peirodic in time. The existence of periodic solutions for the dual problem is proved in Orlicz space setting.
the existence of an -periodic solution of the equation sarisfying the boundary conditions is proved for every -periodic function .
The purpose of this paper is to study the existence of periodic solutions for the non-autonomous second order Hamiltonian system Some new existence theorems are obtained by the least action principle.