The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
        
      
        
	
	
        
    
		
			
			
                                             
                
                    
                    
                
                
    			
    				
    					
                                        Displaying 81 – 
                                        100 of 
                                        207
                        
      
    				
                    
    	            
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
In [JKP] and its sequel [FPS] the authors initiated a program whose (announced) goal is to eventually show that no operator in ℒ(ℋ) is orbit-transitive. In [JKP] it is shown, for example, that if T ∈ ℒ(ℋ) and the essential (Calkin) norm of T is equal to its essential spectral radius, then no compact perturbation of T is orbit-transitive, and in [FPS] this result is extended to say that no element of this same class of operators is weakly orbit-transitive. In the present note we show that no compact...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We study operators whose commutant is reflexive but not hyperreflexive. We construct a C₀ contraction and a Jordan block operator  associated with a Blaschke product B which have the above mentioned property. A sufficient condition for hyperreflexivity of  is given. Some other results related to hyperreflexivity of spaces of operators that could be interesting in themselves are proved.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
A new decomposition of a pair of commuting, but not necessarily doubly commuting contractions is proposed. In the case of power partial isometries a more detailed decomposition is given.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We show that every class A operator has a scalar extension. In particular, such operators with rich spectra have nontrivial invariant subspaces. Also we give some spectral properties of the scalar extension of a class A operator. Finally, we show that every class A operator is nonhypertransitive.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
A review of known decompositions of pairs of isometries is given. A new, finer decomposition and its properties are presented.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We discuss the invariant subspace problem of polynomially bounded operators on a Banach space and obtain an invariant subspace theorem for polynomially bounded operators. At the same time, we state two open problems, which are relative propositions of this invariant subspace theorem. By means of the two relative propositions (if they are true), together with the result of this paper and the result of C. Ambrozie and V. Müller (2004) one can obtain an important conclusion that every polynomially...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
A multiplicative semigroup of idempotent operators is called an operator band. We prove that for each K>1 there exists an irreducible operator band on the Hilbert space  which is norm-bounded by K. This implies that there exists an irreducible operator band on a Banach space such that each member has operator norm equal to 1. Given a positive integer r, we introduce a notion of weak r-transitivity of a set of bounded operators on a Banach space. We construct an operator band on  that is weakly...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
In this paper we study the reflexive subobject lattices and reflexive endomorphism algebras in a concrete category. For the category Set of sets and mappings, a complete characterization for both reflexive subobject lattices and reflexive endomorphism algebras is obtained. Some partial results are also proved for the category of abelian groups.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
Let  be weak contractions (in the sense of Sz.-Nagy and Foiaş),  the minimal functions of their  parts and let  be the greatest common inner divisor of . It is proved that the space  of all operators intertwining  is reflexive if and only if the model operator  is reflexive. Here  means the compression of the unilateral shift onto the space . In particular, in finite-dimensional spaces the space  is reflexive if and only if all roots of the greatest common divisor of minimal polynomials...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
The algebra B(ℋ) of all bounded operators on a Hilbert space ℋ is generated in the strong operator topology by a single one-dimensional projection and a family of commuting unitary operators with cardinality not exceeding dim ℋ. This answers Problem 8 posed by W. Żelazko in [6].
    			                    
    			                 
    		                
    		                
    		            
    			    			
    			 
 
    			
    				Currently displaying 81 – 
                                        100 of 
                                        207