The search session has expired. Please query the service again.
It is well known that a weakly almost periodic operator T in a Banach space is mean ergodic, and in the complex case, also λT is mean ergodic for every |λ|=1. We prove that a positive contraction on is weakly almost periodic if (and only if) it is mean ergodic. An example shows that without positivity the result is false. In order to construct a contraction T on a complex such that λT is mean ergodic whenever |λ|=1, but T is not weakly almost periodic, we prove the following: Let τ be an invertible...
In this paper we characterize weakly mixing transformation groups in terms of weighted ergodic theorems.
In this paper we give an operator theoretic version of a recent result of F. J. Martín-Reyes and A. de la Torre concerning the problem of finding necessary and sufficient conditions for a nonsingular point transformation to satisfy the Pointwise Ergodic Theorem in Lp. We consider a positive conservative contraction T on L1 of a σ-finite measure space (X, F, μ), a fixed function e in L1 with e > 0 on X, and two positive measurable functions V and W on X. We then characterize the pairs (V,W)...
Currently displaying 1 –
10 of
10