Displaying 41 – 60 of 105

Showing per page

On ( n , m ) - A -normal and ( n , m ) - A -quasinormal semi-Hilbertian space operators

Samir Al Mohammady, Sid Ahmed Ould Beinane, Sid Ahmed Ould Ahmed Mahmoud (2022)

Mathematica Bohemica

The purpose of the paper is to introduce and study a new class of operators on semi-Hilbertian spaces, i.e. spaces generated by positive semi-definite sesquilinear forms. Let be a Hilbert space and let A be a positive bounded operator on . The semi-inner product h k A : = A h k , h , k , induces a semi-norm · A . This makes into a semi-Hilbertian space. An operator T A ( ) is said to be ( n , m ) - A -normal if [ T n , ( T A ) m ] : = T n ( T A ) m - ( T A ) m T n = 0 for some positive integers n and m .

On quasi-compactness of operator nets on Banach spaces

Eduard Yu. Emel'yanov (2011)

Studia Mathematica

The paper introduces a notion of quasi-compact operator net on a Banach space. It is proved that quasi-compactness of a uniform Lotz-Räbiger net ( T λ ) λ is equivalent to quasi-compactness of some operator T λ . We prove that strong convergence of a quasi-compact uniform Lotz-Räbiger net implies uniform convergence to a finite-rank projection. Precompactness of operator nets is also investigated.

On spectral properties of linear combinations of idempotents

Hong-Ke Du, Chun-Yan Deng, Mostafa Mbekhta, Vladimír Müller (2007)

Studia Mathematica

Let P,Q be two linear idempotents on a Banach space. We show that the closedness of the range and complementarity of the kernel (range) of linear combinations of P and Q are independent of the choice of coefficients. This generalizes known results and shows that many spectral properties of linear combinations do not depend on their coefficients.

Powers of m-isometries

Teresa Bermúdez, Carlos Díaz Mendoza, Antonio Martinón (2012)

Studia Mathematica

A bounded linear operator T on a Banach space X is called an (m,p)-isometry for a positive integer m and a real number p ≥ 1 if, for any vector x ∈ X, k = 0 m ( - 1 ) k ( m k ) | | T k x | | p = 0 . We prove that any power of an (m,p)-isometry is also an (m,p)-isometry. In general the converse is not true. However, we prove that if T r and T r + 1 are (m,p)-isometries for a positive integer r, then T is an (m,p)-isometry. More precisely, if T r is an (m,p)-isometry and T s is an (l,p)-isometry, then T t is an (h,p)-isometry, where t = gcd(r,s) and h = min(m,l)....

Currently displaying 41 – 60 of 105