A structured staircase algorithm for skew-symmetric/symmetric pencils.
The aim of this paper is to study a quasistatic unilateral contact problem between an elastic body and a foundation. The constitutive law is nonlinear and the contact is modelled with a normal compliance condition associated to a unilateral constraint and Coulomb's friction law. The adhesion between contact surfaces is taken into account and is modelled with a surface variable, the bonding field, whose evolution is described by a first-order differential equation. We establish a variational formulation...
We consider the integral functional , , where , , is a nonempty bounded connected open subset of with smooth boundary, and is a convex, differentiable function. We prove that if admits a minimizer in depending only on the distance from the boundary of , then must be a ball.
The aim of this article is to propose a new method for the grey-level image classification problem. We first present the classical variational approach without and with a regularization term in order to smooth the contours of the classified image. Then we present the general topological asymptotic analysis, and we finally introduce its application to the grey-level image classification problem.
In this paper we analyse the structure of approximate solutions to the compatible two well problem with the constraint that the surface energy of the solution is less than some fixed constant. We prove a quantitative estimate that can be seen as a two well analogue of the Liouville theorem of Friesecke James Müller. Let for . Let . Let . Let be a invertible bilipschitz function with , . There exists positive constants and depending only on , , such that if and satisfies the...
In this paper we analyse the structure of approximate solutions to the compatible two well problem with the constraint that the surface energy of the solution is less than some fixed constant. We prove a quantitative estimate that can be seen as a two well analogue of the Liouville theorem of Friesecke James Müller. Let for . Let . Let . Let be a invertible bilipschitz function with , . There exists positive constants and depending only on σ, , such that if and u satisfies...
A unilateral boundary-value condition at the left end of a simply supported rod is considered. Variational and (equivalent) classical formulations are introduced and all solutions to the classical problem are calculated in an explicit form. Formulas for the energies corresponding to the solutions are also given. The problem is solved and energies of the solutions are compared in the pertubed as well as the unperturbed cases.
We consider a mathematical model which describes a static contact between a nonlinear elastic body and an obstacle. The contact is modelled with Signorini's conditions, associated with a slip-dependent version of Coulomb's nonlocal friction law. We derive a variational formulation and prove its unique weak solvability. We also study the finite element approximation of the problem and obtain an optimal error estimate under extra regularity for the solution. Finally, we establish the convergence of...