Displaying 481 – 500 of 686

Showing per page

Optimal, adaptive and single state feedback control for a 3D chaotic system with golden proportion equilibria

Hassan Saberi Nik, Ping He, Sayyed Taha Talebian (2014)

Kybernetika

In this paper, the problems on purposefully controlling chaos for a three-dimensional quadratic continuous autonomous chaotic system, namely the chaotic Pehlivan-Uyaroglu system are investigated. The chaotic system, has three equilibrium points and more interestingly the equilibrium points have golden proportion values, which can generate single folded attractor. We developed an optimal control design, in order to stabilize the unstable equilibrium points of this system. Furthermore, we propose...

Optimal boundary control for hyperdiffusion equation

Hanif Heidari, Alaeddin Malek (2010)

Kybernetika

In this paper, we consider the solution of optimal control problem for hyperdiffusion equation involving boundary function of continuous time variable in its cost function. A specific direct approach based on infinite series of Fourier expansion in space and temporal integration by parts for analytical solution is proposed to solve optimal boundary control for hyperdiffusion equation. The time domain is divided into number of finite subdomains and optimal function is estimated at each subdomain...

Optimal control and numerical adaptivity for advection–diffusion equations

Luca Dede', Alfio Quarteroni (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose a general approach for the numerical approximation of optimal control problems governed by a linear advection–diffusion equation, based on a stabilization method applied to the lagrangian functional, rather than stabilizing the state and adjoint equations separately. This approach yields a coherently stabilized control problem. Besides, it allows a straightforward a posteriori error estimate in which estimates of higher order terms are needless. Our a posteriori estimates stems from splitting...

Optimal control and numerical adaptivity for advection–diffusion equations

Luca Dede', Alfio Quarteroni (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose a general approach for the numerical approximation of optimal control problems governed by a linear advection–diffusion equation, based on a stabilization method applied to the Lagrangian functional, rather than stabilizing the state and adjoint equations separately. This approach yields a coherently stabilized control problem. Besides, it allows a straightforward a posteriori error estimate in which estimates of higher order terms are needless. Our a posteriori estimates stems from...

Optimal control for 2-D nonlinear control systems

Barbara Bily (2002)

Applicationes Mathematicae

Necessary conditions for some optimal control problem for a nonlinear 2-D system are considered. These conditions can be obtained in the form of a quasimaximum principle.

Optimal control for a class of compartmental models in cancer chemotherapy

Andrzej Świerniak, Urszula Ledzewicz, Heinz Schättler (2003)

International Journal of Applied Mathematics and Computer Science

We consider a general class of mathematical models P for cancer chemotherapy described as optimal control problems over a fixed horizon with dynamics given by a bilinear system and an objective which is linear in the control. Several two- and three-compartment models considered earlier fall into this class. While a killing agent which is active during cell division constitutes the only control considered in the two-compartment model, Model A, also two three-compartment models, Models B and C, are...

Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels

Ousseynou Nakoulima (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a distributed system in which the state q is governed by a parabolic equation and a pair of controls v = (h,k) where h and k play two different roles: the control k is of controllability type while h expresses that the state q does not move too far from a given state. Therefore, it is natural to introduce the control point of view. In fact, there are several ways to state and solve optimal control problems with a pair of controls h and k, in particular the Least Squares method...

Currently displaying 481 – 500 of 686