Displaying 281 – 300 of 397

Showing per page

Oscillations and concentrations in sequences of gradients

Agnieszka Kałamajska, Martin Kružík (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We use DiPerna's and Majda's generalization of Young measures to describe oscillations and concentrations in sequences of gradients, { u k } , bounded in L p ( Ω ; m × n ) if p > 1 and Ω n is a bounded domain with the extension property in W 1 , p . Our main result is a characterization of those DiPerna-Majda measures which are generated by gradients of Sobolev maps satisfying the same fixed Dirichlet boundary condition. Cases where no boundary conditions nor regularity of Ω are required and links with lower semicontinuity...

PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages

Fredi Tröltzsch, Irwin Yousept (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with a PDE-constrained optimization problem of induction heating, where the state equations consist of 3D time-dependent heat equations coupled with 3D time-harmonic eddy current equations. The control parameters are given by finite real numbers representing applied alternating voltages which enter the eddy current equations via impressed current. The optimization problem is to find optimal voltages so that, under certain constraints on the voltages and the temperature, a...

PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages

Fredi Tröltzsch, Irwin Yousept (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with a PDE-constrained optimization problem of induction heating, where the state equations consist of 3D time-dependent heat equations coupled with 3D time-harmonic eddy current equations. The control parameters are given by finite real numbers representing applied alternating voltages which enter the eddy current equations via impressed current. The optimization problem is to find optimal voltages so that, under certain constraints on the voltages and the temperature, a...

POD a-posteriori error based inexact SQP method for bilinear elliptic optimal control problems

Martin Kahlbacher, Stefan Volkwein (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

An optimal control problem governed by a bilinear elliptic equation is considered. This problem is solved by the sequential quadratic programming (SQP) method in an infinite-dimensional framework. In each level of this iterative method the solution of linear-quadratic subproblem is computed by a Galerkin projection using proper orthogonal decomposition (POD). Thus, an approximate (inexact) solution of the subproblem is determined. Based on a POD a-posteriori error estimator developed by Tröltzsch...

POD a-posteriori error based inexact SQP method for bilinear elliptic optimal control problems∗

Martin Kahlbacher, Stefan Volkwein (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

An optimal control problem governed by a bilinear elliptic equation is considered. This problem is solved by the sequential quadratic programming (SQP) method in an infinite-dimensional framework. In each level of this iterative method the solution of linear-quadratic subproblem is computed by a Galerkin projection using proper orthogonal decomposition (POD). Thus, an approximate (inexact) solution of the subproblem is determined. Based on a POD...

Quasiconvex relaxation of multidimensional control problems with integrands f(t, ξ, v)

Marcus Wagner (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We prove a general relaxation theorem for multidimensional control problems of Dieudonné-Rashevsky type with nonconvex integrands f(t, ξ, v) in presence of a convex control restriction. The relaxed problem, wherein the integrand f has been replaced by its lower semicontinuous quasiconvex envelope with respect to the gradient variable, possesses the same finite minimal value as the original problem, and admits a global minimizer. As an application, we provide existence theorems for the image registration...

Quasiconvex relaxation of multidimensional control problems with integrands f(t, ξ, v)

Marcus Wagner (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We prove a general relaxation theorem for multidimensional control problems of Dieudonné-Rashevsky type with nonconvex integrands f(t, ξ, v) in presence of a convex control restriction. The relaxed problem, wherein the integrand f has been replaced by its lower semicontinuous quasiconvex envelope with respect to the gradient variable, possesses the same finite minimal value as the original problem, and admits a global minimizer. As an application, we provide existence theorems for the image registration...

Quasilinear elliptic equations with discontinuous coefficients

Lucio Boccardo, Giuseppe Buttazzo (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We prove an existence result for equations of the form { - D i ( a i j ( x , u ) D j u ) = f in Ω u H 0 1 ( Ω ) . where the coefficients a i j ( x , s ) satisfy the usual ellipticity conditions and hypotheses weaker than the continuity with respect to the variable s . Moreover, we give a counterexample which shows that the problem above may have no solution if the coefficients a i j ( x , s ) are supposed only Borel functions

Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems

Eduardo Casas, Fredi Tröltzsch (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Optimal control problems for semilinear elliptic equations with control constraints and pointwise state constraints are studied. Several theoretical results are derived, which are necessary to carry out a numerical analysis for this class of control problems. In particular, sufficient second-order optimality conditions, some new regularity results on optimal controls and a sufficient condition for the uniqueness of the Lagrange multiplier associated with the state constraints are presented.

Regularity and optimal control of quasicoupled and coupled heating processes

Jiří Jarušek (1996)

Applications of Mathematics

Sufficient conditions for the stresses in the threedimensional linearized coupled thermoelastic system including viscoelasticity to be continuous and bounded are derived and optimization of heating processes described by quasicoupled or partially linearized coupled thermoelastic systems with constraints on stresses is treated. Due to the consideration of heating regimes being “as nonregular as possible” and because of the well-known lack of results concerning the classical regularity of solutions...

Relaxation of optimal control problems in Lp-SPACES

Nadir Arada (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider control problems governed by semilinear parabolic equations with pointwise state constraints and controls in an Lp-space (p < ∞). We construct a correct relaxed problem, prove some relaxation results, and derive necessary optimality conditions.

Currently displaying 281 – 300 of 397