Křivky v Gaussově rovině
The goal of the article is to point out the concept of the escribed circle of the triangle which is only touched on in present secondary mathematics textbooks. Interesting properties of escribed circles of the triangle are shown on three examples.
On sait depuis les travaux de Bricard et de Connelly qu’il existe dans l’espace euclidien des polyèdres (non convexes) qui sont flexibles : on peut les déformer continûment sans changer la forme de leurs faces. La conjecture des soufflets affirme que le volume interieur de ces polyèdres est constant au cours de la déformation. Elle a été démontrée récemment par I. Sabitov, qui a pour cela utilisé des outils algébriques inattendus dans ce contexte.
Avant leur célèbre polémique sur la logistique, Poincaré et Russell s’étaient déjà publiquement opposés sur la question du statut des axiomes de la géométrie. Les débats philosophiques de la fin du xixe siècle autour de la géométrie et de la théorie de l’espace influent de manière significative sur la conception et le développement de la géométrie. Le but de cet article est de montrer comment les mathématiques sont mises au service des thèses soutenues par Poincaré et Russell et d’analyser quelle...
In this paper the plane Laguerre’s geometry in the augmented plane of dual numbers is presented. Basic integral and differential invariants of -curves in the plane are deduced, i.e. the -curve arc, -curvature, -minimal curves, -circle. Furthermore the contact of -curves, -osculating circle, -evolute of a curve and some special -motions are studied from the point of view of -Differential geometry.
Nous établissons des inégalités isosystoliques optimales pour les 17 orbifolds plates en dimension 2 (analogues à l’inégalité classique de Loewner pour le tore), ainsi que pour les quotients du plan hyperbolique par les groupes du triangle.