k-Symmetric Submanifolds of RN.
We deal with complete submanifolds with weighted Poincaré inequality. By assuming the submanifold is -stable or has sufficiently small total curvature, we establish two vanishing theorems for harmonic -forms, which are extensions of the results of Dung-Seo and Cavalcante-Mirandola-Vitório.
We extend some results by Goldshtein, Kuzminov, and Shvedov about the -cohomology of warped cylinders to -cohomology for . As an application, we establish some sufficient conditions for the nontriviality of the -torsion of a surface of revolution.
We generalize the construction of Maslov-Trofimov characteristic classes to the case of some G-manifolds and use it to study certain hamiltonian systems.
On sait depuis les travaux de Bricard et de Connelly qu’il existe dans l’espace euclidien des polyèdres (non convexes) qui sont flexibles : on peut les déformer continûment sans changer la forme de leurs faces. La conjecture des soufflets affirme que le volume interieur de ces polyèdres est constant au cours de la déformation. Elle a été démontrée récemment par I. Sabitov, qui a pour cela utilisé des outils algébriques inattendus dans ce contexte.