The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 21 –
40 of
328
We study spectral asymptotics and resolvent bounds for non-selfadjoint perturbations of selfadjoint -pseudodifferential operators in dimension 2, assuming that the classical flow of the unperturbed part is completely integrable. Spectral contributions coming from rational invariant Lagrangian tori are analyzed. Estimating the tunnel effect between strongly irrational (Diophantine) and rational tori, we obtain an accurate description of the spectrum in a suitable complex window, provided that the...
We investigate the existence of symplectic non-Kählerian structures on compact solvmanifolds and prove some results which give strong necessary conditions for the existence of Kählerian structures in terms of rational homotopy theory. Our results explain known examples and generalize the Benson-Gordon theorem (Benson and Gordon (1990); our method allows us to drop the assumption of the complete solvability of G).
We construct a version of rational Symplectic Field Theory for pairs , where is an exact symplectic manifold, where is an exact Lagrangian submanifold with components subdivided into subsets, and where both and have cylindrical ends. The theory associates to a -graded chain complex of vector spaces over , filtered with filtration levels. The corresponding -level spectral sequence is invariant under deformations of and has the following property: if is obtained by joining a...
We compute future timelike and nonspacelike reachable sets from the origin for a class of contact sub-Lorentzian metrics on ℝ³. Then we construct non-smooth (and therefore non-Hamiltonian) null geodesics for these metrics. As a consequence we deduce that the sub-Lorentzian distance from the origin is continuous at points belonging to the boundary of the reachable set.
Nous présentons plusieurs résultats de rigidité concernant les flots d’Anosov admettant transversalement des structures symplectiques réelles ou complexes de dimension .
We introduce the new notion of pseudo--parallel real hypersurfaces in a complex projective space as real hypersurfaces satisfying a condition about the covariant derivative of the structure Jacobi operator in any direction of the maximal holomorphic distribution. This condition generalizes parallelness of the structure Jacobi operator. We classify this type of real hypersurfaces.
We characterize homogeneous real hypersurfaces of types (A₀), (A₁) and (B) in a complex projective space or a complex hyperbolic space.
In this paper we prove a non-existence of real hypersurfaces in complex hyperbolic two-plane Grassmannians SU2.m/S(U2·Um), m≥3, whose structure tensors {ɸi}i=1,2,3 commute with the shape operator.
We give a classification of Hopf real hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting conditions between the restricted normal Jacobi operator and the shape operator (or the Ricci tensor ).
This paper consists of two parts. In the first, we find some geometric conditions derived from the local symmetry of the inverse image by the Hopf fibration of a real hypersurface in complex space form . In the second, we give a complete classification of real hypersurfaces in which satisfy the above geometric facts.
We prove the non-existence of real hypersurfaces in complex two-plane Grassmannians whose normal Jacobi operator is of Codazzi type.
In this paper, first we introduce a new notion of commuting condition that between the shape operator and the structure tensors and for real hypersurfaces in . Suprisingly, real hypersurfaces of type , that is, a tube over a totally geodesic in complex two plane Grassmannians satisfy this commuting condition. Next we consider a complete classification of Hopf hypersurfaces in satisfying the commuting condition. Finally we get a characterization of Type in terms of such commuting...
Lee, Kim and Suh (2012) gave a characterization for real hypersurfaces of Type in complex two plane Grassmannians with a commuting condition between the shape operator and the structure tensors and for in . Motivated by this geometrical notion, in this paper we consider a new commuting condition in relation to the shape operator and a new operator induced by two structure tensors and . That is, this commuting shape operator is given by . Using this condition, we prove that...
Currently displaying 21 –
40 of
328