Displaying 421 – 440 of 1190

Showing per page

On localization in holomorphic equivariant cohomology

Ugo Bruzzo, Vladimir Rubtsov (2012)

Open Mathematics

We study a holomorphic equivariant cohomology built out of the Atiyah algebroid of an equivariant holomorphic vector bundle and prove a related localization formula. This encompasses various residue formulas in complex geometry, in particular we shall show that it contains as special cases Carrell-Liebermann’s and Feng-Ma’s residue formulas, and Baum-Bott’s formula for the zeroes of a meromorphic vector field.

On LP-Sasakian manifolds.

Shaikh, A.A., Biswas, Sudipta (2004)

Bulletin of the Malaysian Mathematical Sciences Society. Second Series

On manifolds with nonhomogeneous factors

Manuel Cárdenas, Francisco Lasheras, Antonio Quintero, Dušan Repovš (2012)

Open Mathematics

We present simple examples of finite-dimensional connected homogeneous spaces (they are actually topological manifolds) with nonhomogeneous and nonrigid factors. In particular, we give an elementary solution of an old problem in general topology concerning homogeneous spaces.

On metrics of positive Ricci curvature conformal to M × 𝐑 m

Juan Miguel Ruiz (2009)

Archivum Mathematicum

Let ( M n , g ) be a closed Riemannian manifold and g E the Euclidean metric. We show that for m > 1 , M n × 𝐑 m , ( g + g E ) is not conformal to a positive Einstein manifold. Moreover, M n × 𝐑 m , ( g + g E ) is not conformal to a Riemannian manifold of positive Ricci curvature, through a radial, integrable, smooth function, ϕ : 𝐑 𝐦 𝐑 + , for m > 1 . These results are motivated by some recent questions on Yamabe constants.

On metrizability of locally homogeneous affine 2-dimensional manifolds

Alena Vanžurová (2013)

Archivum Mathematicum

In [19] we proved a theorem which shows how to find, under particular assumptions guaranteeing metrizability (among others, recurrency of the curvature is necessary), all (at least local) pseudo-Riemannian metrics compatible with a given torsion-less linear connection without flat points on a two-dimensional affine manifold. The result has the form of an implication only; if there are flat points, or if curvature is not recurrent, we have no good answer in general, which can be also demonstrated...

On Metrizable Locally Homogeneous Connections in Dimension

Alena Vanžurová (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

We discuss metrizability of locally homogeneous affine connections on affine 2-manifolds and give some partial answers, using the results from [Arias-Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds. Monatsh. Math. 153 (2008), 1–18.], [Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogeneous connections on 2-dimensional manifolds vis group-theoretical approach. CEJM 2, 1 (2004), 87–102.], [Vanžurová,...

Currently displaying 421 – 440 of 1190