The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We show that an orientable fibration whose fiber has a homotopy type of homogeneous space with rank is totally non homologous to zero for rational coefficients. The Jacobian formed by invariant polynomial under the Weyl group of plays a key role in the proof. We also show that it is valid for mod. coefficients if does not divide the order of the Weyl group of .
In this paper we prove a non-existence of real hypersurfaces in complex hyperbolic two-plane Grassmannians SU2.m/S(U2·Um), m≥3, whose structure tensors {ɸi}i=1,2,3 commute with the shape operator.
The purpose of these survey notes is to give a presentation of a classical theorem of Nomizu [Nom54] that relates the invariant affine connections on reductive homogeneous spaces and nonassociative algebras.
If N is a simply connected real nilpotent Lie group with a Γ-rational complex structure, where Γ is a lattice in N, then [...] for each s, t.We study relations between invariant complex structures and Hodge numbers of compact nilmanifolds from a viewpoint of Lie algberas.
Flag manifolds are in general not symmetric spaces. But they are provided with a structure of -symmetric space. We describe the Riemannian metrics adapted to this structure and some properties of reducibility. The conditions for a metric adapted to the -symmetric structure to be naturally reductive are detailed for the flag manifold .
Currently displaying 1 –
15 of
15