Displaying 241 – 260 of 674

Showing per page

The minimum uniform compactification of a metric space

R. Grant Woods (1995)

Fundamenta Mathematicae

It is shown that associated with each metric space (X,d) there is a compactification u d X of X that can be characterized as the smallest compactification of X to which each bounded uniformly continuous real-valued continuous function with domain X can be extended. Other characterizations of u d X are presented, and a detailed study of the structure of u d X is undertaken. This culminates in a topological characterization of the outgrowth u d n n , where ( n , d ) is Euclidean n-space with its usual metric.

The Niemytzki plane is ϰ -metrizable

Wojciech Bielas, Andrzej Kucharski, Szymon Plewik (2021)

Mathematica Bohemica

We prove that the Niemytzki plane is ϰ -metrizable and we try to explain the differences between the concepts of a stratifiable space and a ϰ -metrizable space. Also, we give a characterisation of ϰ -metrizable spaces which is modelled on the version described by Chigogidze.

The nonexistence of expansive homeomorphisms of chainable continua

Hisao Kato (1996)

Fundamenta Mathematicae

A homeomorphism f:X → X of a compactum X with metric d is expansive if there is c > 0 such that if x, y ∈ X and x ≠ y, then there is an integer n ∈ ℤ such that d ( f n ( x ) , f n ( y ) ) > c . In this paper, we prove that if a homeomorphism f:X → X of a continuum X can be lifted to an onto map h:P → P of the pseudo-arc P, then f is not expansive. As a corollary, we prove that there are no expansive homeomorphisms on chainable continua. This is an affirmative answer to one of Williams’ conjectures.

The nonexistence of universal metric flows

Stefan Geschke (2018)

Commentationes Mathematicae Universitatis Carolinae

We consider dynamical systems of the form ( X , f ) where X is a compact metric space and f : X X is either a continuous map or a homeomorphism and provide a new proof that there is no universal metric dynamical system of this kind. The same is true for metric minimal dynamical systems and for metric abstract ω -limit sets, answering a question by Will Brian.

The notion of closedness in topological categories

Mehmet Baran (1993)

Commentationes Mathematicae Universitatis Carolinae

In [1], various generalizations of the separation properties, the notion of closed and strongly closed points and subobjects of an object in an arbitrary topological category are given. In this paper, the relationship between various generalized separation properties as well as relationship between our separation properties and the known ones ([4], [5], [7], [9], [10], [14], [16]) are determined. Furthermore, the relationships between the notion of closedness and strongly closedness are investigated...

Currently displaying 241 – 260 of 674