Displaying 301 – 320 of 1151

Showing per page

A generating family for the Freudenthal compactification of a class of rimcompact spaces

Jesús M. Domínguez (2003)

Fundamenta Mathematicae

For X a Tikhonov space, let F(X) be the algebra of all real-valued continuous functions on X that assume only finitely many values outside some compact subset. We show that F(X) generates a compactification γX of X if and only if X has a base of open sets whose boundaries have compact neighborhoods, and we note that if this happens then γX is the Freudenthal compactification of X. For X Hausdorff and locally compact, we establish an isomorphism between the lattice of all subalgebras of F ( X ) / C K ( X ) and the...

A generic theorem in the theory of cardinal invariants of topological spaces

Aleksander V. Arhangel'skii (1995)

Commentationes Mathematicae Universitatis Carolinae

Relative versions of many important theorems on cardinal invariants of topological spaces are formulated and proved on the basis of a general technical result, which provides an algorithm for such proofs. New relative cardinal invariants are defined, and open problems are discussed.

A geometric proof of the Perron-Frobenius theorem.

Alberto Borobia, Ujué R. Trías (1992)

Revista Matemática de la Universidad Complutense de Madrid

We obtain an elementary geometrical proof of the classical Perron-Frobenius theorem for non-negative matrices A by using the Brouwer fixed-point theorem and by studying the dynamics of the action of A on convenient subsets of Rn.

A group topology on the free abelian group of cardinality 𝔠 that makes its square countably compact

Ana Carolina Boero, Artur Hideyuki Tomita (2011)

Fundamenta Mathematicae

Under 𝔭 = 𝔠, we prove that it is possible to endow the free abelian group of cardinality 𝔠 with a group topology that makes its square countably compact. This answers a question posed by Madariaga-Garcia and Tomita and by Tkachenko. We also prove that there exists a Wallace semigroup (i.e., a countably compact both-sided cancellative topological semigroup which is not a topological group) whose square is countably compact. This answers a question posed by Grant.

A groupoid formulation of the Baire Category Theorem

Jonathan Brown, Lisa Orloff Clark (2014)

Fundamenta Mathematicae

We prove that the Baire Category Theorem is equivalent to the following: Let G be a topological groupoid such that the unit space is a complete metric space, and there is a countable cover of G by neighbourhood bisections. If G is effective, then G is topologically principal.

Currently displaying 301 – 320 of 1151