The search session has expired. Please query the service again.
Displaying 381 –
400 of
1531
We present an example of a connected, Polish, countable dense homogeneous space X that is not strongly locally homogeneous. In fact, a nontrivial homeomorphism of X is the identity on no nonempty open subset of X.
We prove that if a space X is countable dense homogeneous and no set of size n-1 separates it, then X is strongly n-homogeneous. Our main result is the construction of an example of a Polish space X that is strongly n-homogeneous for every n, but not countable dense homogeneous.
We suggest a method of constructing decompositions of a topological space X having an open subset homeomorphic to the space (ℝⁿ,τ), where n is an integer ≥ 1 and τ is any admissible extension of the Euclidean topology of ℝⁿ (in particular, X can be a finite-dimensional separable metrizable manifold), into a countable family ℱ of sets (dense in X and zero-dimensional in the case of manifolds) such that the union of each non-empty proper subfamily of ℱ does not have the Baire property in X.
It is shown that every strong space is a -space. In particular, it follows that every paracompact space is a -space.
For every cardinal τ and every ordinal α, we construct a metrizable space and a strongly countable-dimensional compact space of weight τ such that , and each metrizable space X of weight τ such that D(X) ≤ α is homeomorphic to a subspace of and to a subspace of .
Currently displaying 381 –
400 of
1531