The search session has expired. Please query the service again.
Displaying 541 –
560 of
8504
Let be a topological property. A space is said to be star P if whenever is an open cover of , there exists a subspace with property such that . In this note, we construct a Tychonoff pseudocompact SCE-space which is not star Lindelöf, which gives a negative answer to a question of Rojas-Sánchez and Tamariz-Mascarúa.
A space is splittable over a space (or splits over ) if for every there exists a continuous map with . We prove that any -dimensional polyhedron splits over but not necessarily over . It is established that if a metrizable compact splits over , then . An example of -dimensional compact space which does not split over is given.
A topological space is said to be star Lindelöf if for any open cover of there is a Lindelöf subspace such that . The “extent” of is the supremum of the cardinalities of closed discrete subsets of . We prove that under every star Lindelöf, first countable and normal space must have countable extent. We also obtain an example under , which shows that a star Lindelöf, first countable and normal space may not have countable extent.
The centralizer of a semisimple isometric extension of a minimal flow is described.
This paper investigates the continuity of projection matrices and illustrates an important application of this property to the derivation of the asymptotic distribution of quadratic forms. We give a new proof and an extension of a result of Stewart (1977).
We prove that every Tychonoff strongly monotonically monolithic star countable space is Lindelöf, which solves a question posed by O.T. Alas et al. We also use this result to generalize a metrization theorem for strongly monotonically monolithic spaces. At the end of this paper, we study the extent of star countable spaces with k-in-countable bases, k ∈ ℤ.
Currently displaying 541 –
560 of
8504