Displaying 541 – 560 of 8496

Showing per page

A note on splittable spaces

Vladimir Vladimirovich Tkachuk (1992)

Commentationes Mathematicae Universitatis Carolinae

A space X is splittable over a space Y (or splits over Y ) if for every A X there exists a continuous map f : X Y with f - 1 f A = A . We prove that any n -dimensional polyhedron splits over 𝐑 2 n but not necessarily over 𝐑 2 n - 2 . It is established that if a metrizable compact X splits over 𝐑 n , then dim X n . An example of n -dimensional compact space which does not split over 𝐑 2 n is given.

A note on star Lindelöf, first countable and normal spaces

Wei-Feng Xuan (2017)

Mathematica Bohemica

A topological space X is said to be star Lindelöf if for any open cover 𝒰 of X there is a Lindelöf subspace A X such that St ( A , 𝒰 ) = X . The “extent” e ( X ) of X is the supremum of the cardinalities of closed discrete subsets of X . We prove that under V = L every star Lindelöf, first countable and normal space must have countable extent. We also obtain an example under MA + ¬ CH , which shows that a star Lindelöf, first countable and normal space may not have countable extent.

A note on the extent of two subclasses of star countable spaces

Zuoming Yu (2012)

Open Mathematics

We prove that every Tychonoff strongly monotonically monolithic star countable space is Lindelöf, which solves a question posed by O.T. Alas et al. We also use this result to generalize a metrization theorem for strongly monotonically monolithic spaces. At the end of this paper, we study the extent of star countable spaces with k-in-countable bases, k ∈ ℤ.

Currently displaying 541 – 560 of 8496