Contractive mappings on a premetric space.
Some sufficient conditions for controllability of nonlinear systems described by differential equation ẋ = f(t,x(t),u(t)) are given.
Let be a compact Hausdorff space with a point such that is linearly Lindelöf. Is then first countable at ? What if this is true for every in ? We consider these and some related questions, and obtain partial answers; in particular, we prove that the answer to the second question is “yes” when is, in addition, -monolithic. We also prove that if is compact, Hausdorff, and is strongly discretely Lindelöf, for every in , then is first countable. An example of linearly Lindelöf...
We discuss here several types of convergence of conditional expectations for unbounded closed convex random sets of the form where is a decreasing sequence of sub-σ-algebras and is a sequence of closed convex random sets in a separable Banach space.