Attractors and a fixed point theorem in locally convex space
This paper surveys some recent results concerning inverse limits of tent maps. The survey concentrates on Ingram’s Conjecture. Some motivation is given for the study of such inverse limits.
Le cadre de cet article est celui des groupes et des espaces hyperboliques de M. Gromov. Il est motivé par la question suivante : comment différencier deux groupes hyperboliques à quasi-isométrie près ? On illustre ce problème en détaillant un exemple de M. Gromov issu de Asymptotic invariants for infinite groups. On décrit une famille infinie de groupes hyperboliques, deux à deux non quasi-isométriques, de bord la courbe de Menger. La méthode consiste à étudier leur structure quasi-conforme au...
We prove for a subspace of a -space , is (strictly) Aull-paracompact in and is Hausdorff in if and only if is strongly star-normal in . This result provides affirmative answers to questions of A.V. Arhangel’skii–I.Ju. Gordienko [3] and of A.V. Arhangel’skii [2].
This note is about functions ƒ : Aω → Bω whose graph is recognized by a Büchi finite automaton on the product alphabet A x B. These functions are Baire class 2 in the Baire hierarchy of Borel functions and it is decidable whether such function are continuous or not. In 1920 W. Sierpinski showed that a function is Baire class 1 if and only if both the overgraph and the undergraph of f are Fσ. We show that such characterization is also true for functions on infinite words if we replace the real...
The goal of this paper is to characterize the family of averages of comparable (Darboux) quasi-continuous functions.
More precisely, we are analyzing some of H. Simmons, S. B. Niefield and K. I. Rosenthal results concerning sublocales induced by subspaces. H. Simmons was concerned with the question when the coframe of sublocales is Boolean; he recognized the role of the axiom for the relation of certain degrees of scatteredness but did not emphasize its role in the relation between sublocales and subspaces. S. B. Niefield and K. I. Rosenthal just mention this axiom in a remark about Simmons’ result. In this...