Displaying 1161 – 1180 of 1528

Showing per page

On the ideal convergence of sequences of quasi-continuous functions

Tomasz Natkaniec, Piotr Szuca (2016)

Fundamenta Mathematicae

For any Borel ideal ℐ we describe the ℐ-Baire system generated by the family of quasi-continuous real-valued functions. We characterize the Borel ideals ℐ for which the ideal and ordinary Baire systems coincide.

On the ideal (v 0)

Piotr Kalemba, Szymon Plewik, Anna Wojciechowska (2008)

Open Mathematics

The σ-ideal (v 0) is associated with the Silver forcing, see [5]. Also, it constitutes the family of all completely doughnut null sets, see [9]. We introduce segment topologies to state some resemblances of (v 0) to the family of Ramsey null sets. To describe add(v 0) we adopt a proof of Base Matrix Lemma. Consistent results are stated, too. Halbeisen’s conjecture cov(v 0) = add(v 0) is confirmed under the hypothesis t = min{cf(c), r}. The hypothesis cov(v 0) = ω 1 implies that (v 0) has the ideal...

On the insertion of Darboux functions

Aleksander Maliszewski (1998)

Fundamenta Mathematicae

The main goal of this paper is to characterize the family of all functions f which satisfy the following condition: whenever g is a Darboux function and f < g on ℝ there is a Darboux function h such that f < h < g on ℝ.

On the intrinsic geometry of a unit vector field

Yampolsky, Alexander L. Yampolsky, Alexander L. (2002)

Commentationes Mathematicae Universitatis Carolinae

We study the geometrical properties of a unit vector field on a Riemannian 2-manifold, considering the field as a local imbedding of the manifold into its tangent sphere bundle with the Sasaki metric. For the case of constant curvature K , we give a description of the totally geodesic unit vector fields for K = 0 and K = 1 and prove a non-existence result for K 0 , 1 . We also found a family ξ ω of vector fields on the hyperbolic 2-plane L 2 of curvature - c 2 which generate foliations on T 1 L 2 with leaves of constant intrinsic...

On the k -Baire property

Alessandro Fedeli (1993)

Commentationes Mathematicae Universitatis Carolinae

In this note we show the following theorem: “Let X be an almost k -discrete space, where k is a regular cardinal. Then X is k + -Baire iff it is a k -Baire space and every point- k open cover 𝒰 of X such that card ( 𝒰 ) k is locally- k at a dense set of points.” For k = 0 we obtain a well-known characterization of Baire spaces. The case k = 1 is also discussed.

On the LC1-spaces which are Cantor or arcwise homogeneous

Hanna Patkowska (1993)

Fundamenta Mathematicae

A space X containing a Cantor set (an arc) is Cantor (arcwise) homogeneousiff for any two Cantor sets (arcs) A,B ⊂ X there is an autohomeomorphism h of X such that h(A)=B. It is proved that a continuum (an arcwise connected continuum) X such that either dim X=1 or X L C 1 is Cantor (arcwise) homogeneous iff X is a closed manifold of dimension at most 2.

Currently displaying 1161 – 1180 of 1528