Displaying 1181 – 1200 of 1528

Showing per page

On the Lifshits Constant for Hyperspaces

K. Leśniak (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

The Lifshits theorem states that any k-uniformly Lipschitz map with a bounded orbit on a complete metric space X has a fixed point provided k < ϰ(X) where ϰ(X) is the so-called Lifshits constant of X. For many spaces we have ϰ(X) > 1. It is interesting whether we can use the Lifshits theorem in the theory of iterated function systems. Therefore we investigate the value of the Lifshits constant for several classes of hyperspaces.

On the Lindelöf property of spaces of continuous functions over a Tychonoff space and its subspaces

Oleg Okunev (2009)

Commentationes Mathematicae Universitatis Carolinae

We study relations between the Lindelöf property in the spaces of continuous functions with the topology of pointwise convergence over a Tychonoff space and over its subspaces. We prove, in particular, the following: a) if C p ( X ) is Lindelöf, Y = X { p } , and the point p has countable character in Y , then C p ( Y ) is Lindelöf; b) if Y is a cozero subspace of a Tychonoff space X , then l ( C p ( Y ) ω ) l ( C p ( X ) ω ) and ext ( C p ( Y ) ω ) ext ( C p ( X ) ω ) .

On the lower semicontinuity of certain integral functionals

Ennio De Giorgi, Giuseppe Buttazzo, Gianni Dal Maso (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si dimostra che il funzionale Ω f ( u , D u ) d x è semicontinuo inferiormente su W l o c 1 , 1 ( Ω ) , rispetto alla topologia indotta da L l o c 1 ( Ω ) , qualora l’integrando f ( s , p ) sia una funzione non-negativa, misurabile in s , convessa in p , limitata nell’intorno dei punti del tipo ( s , 0 ) , e tale che la funzione s f ( s , 0 ) sia semicontinua inferiormente su 𝐑 .

On the Lyapunov numbers

Sergiĭ Kolyada, Oleksandr Rybak (2013)

Colloquium Mathematicae

We introduce and study the Lyapunov numbers-quantitative measures of the sensitivity of a dynamical system (X,f) given by a compact metric space X and a continuous map f: X → X. In particular, we prove that for a minimal topologically weakly mixing system all Lyapunov numbers are the same.

On the mappings 𝒵 A and A in intermediate rings of C ( X )

Mehdi Parsinia (2018)

Commentationes Mathematicae Universitatis Carolinae

In this article, we investigate new topological descriptions for two well-known mappings 𝒵 A and A defined on intermediate rings A ( X ) of C ( X ) . Using this, coincidence of each two classes of z -ideals, 𝒵 A -ideals and A -ideals of A ( X ) is studied. Moreover, we answer five questions concerning the mapping A raised in [J. Sack, S. Watson, C and C * among intermediate rings, Topology Proc. 43 (2014), 69–82].

On the maximality of the sum of two maximal monotone operators.

Hassan Riahi (1990)

Publicacions Matemàtiques

In this paper we deal with the maximal monotonicity of A + B when the two maximal monotone operators A and B defined in a Hilbert space X are satisfying the condition: Uλ ≥ 0 λ (dom B - dom A) is a closed linear subspace of X.

On the metric dimension of converging sequences

Ladislav, Jr. Mišík, Tibor Žáčik (1993)

Commentationes Mathematicae Universitatis Carolinae

In the paper, some kind of independence between upper metric dimension and natural order of converging sequences is shown — for any sequence converging to zero there is a greater sequence with an arbitrary ( 1 ) upper dimension. On the other hand there is a relationship to summability of series — the set of elements of any positive summable series must have metric dimension less than or equal to 1 / 2 .

On the metric reflection of a pseudometric space in ZF

Horst Herrlich, Kyriakos Keremedis (2015)

Commentationes Mathematicae Universitatis Carolinae

We show: (i) The countable axiom of choice 𝐂𝐀𝐂 is equivalent to each one of the statements: (a) a pseudometric space is sequentially compact iff its metric reflection is sequentially compact, (b) a pseudometric space is complete iff its metric reflection is complete. (ii) The countable multiple choice axiom 𝐂𝐌𝐂 is equivalent to the statement: (a) a pseudometric space is Weierstrass-compact iff its metric reflection is Weierstrass-compact. (iii) The axiom of choice 𝐀𝐂 is equivalent to each one of the...

Currently displaying 1181 – 1200 of 1528