The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
135
We prove:
1) Every Baire measure on the Kojman-Shelah Dowker space admits a Borel extension.
2) If the continuum is not real-valued-measurable then every Baire measure on M. E. Rudin's Dowker space admits a Borel extension.
Consequently, Balogh's space remains the only candidate to be a ZFC counterexample to the measure extension problem of the three presently known ZFC Dowker spaces.
We prove the existence of Carathéodory selections and representations of a closed convex valued, lower Carathéodory multifunction from a set A in into a separable Banach space Y, where ℰ is a sub-σ-field of the Borel σ-field ℬ(E) of a Polish space E, X is a Polish space and A is the Suslin operation. As applications we obtain random versions of results on extensions of continuous functions and fixed points of multifunctions. Such results are useful in the study of random differential equations...
For a linear operator T in a Banach space let denote the point spectrum of T, let for finite n > 0 be the set of all such that dim ker(T - λ) = n and let be the set of all for which ker(T - λ) is infinite-dimensional. It is shown that is , is and for each finite n the set is the intersection of an set and a set provided T is closable and the domain of T is separable and weakly σ-compact. For closed densely defined operators in a separable Hilbert space a more detailed decomposition...
We prove that every (extended) Borel subset E of X × Y, where X is complete metric and Y is Polish, can be covered by countably many extended Borel sets with compact sections if the sections , x ∈ X, are σ-compact. This is a nonseparable version of a theorem of Saint Raymond. As a by-product, we get a proof of Saint Raymond’s result which does not use transfinite induction.
Borsuk's quasi-equivalence relation on the class of all compacta is considered. The open problem concerning transitivity of this relation is solved in the negative. Namely, three continua X, Y and Z lying in ℝ³ are constructed such that X is quasi-equivalent to Y and Y is quasi-equivalent to Z, while X is not quasi-equivalent to Z.
The Borsuk-Sieklucki theorem says that for every uncountable family of n-dimensional closed subsets of an n-dimensional ANR-compactum, there exist α ≠ β such that . In this paper we show a cohomological version of that theorem:
Theorem. Suppose a compactum X is , where n ≥ 1, and G is an Abelian group. Let be an uncountable family of closed subsets of X. If for all α ∈ J, then for some α ≠ β.
For G being a countable principal ideal domain the above result was proved by Choi and Kozlowski...
A generalization of the theorem of Bajmóczy and Bárány which in turn is a common generalization of Borsuk's and Radon's theorem is presented. A related conjecture is formulated.
Conditions are given which enable or disable a complex space to be mapped biholomorphically onto a bounded closed analytic subset of a Banach space. They involve on the one hand the Radon-Nikodym property and on the other hand the completeness of the Caratheodory metric of .
Currently displaying 101 –
120 of
135