On total paracompactness and total metacompactness
In this paper we study the behavior of the (transfinite) small inductive dimension on finite products of topological spaces. In particular we essentially improve Toulmin’s estimation [T] of for Cartesian products.
Trivially symmetrizable, trivially semi-metrizable and trivially D-completely regular mappings are defined. They are characterized as mappings parallel to symmetrizable, semi-metrizable and D-completely regular spaces correspondently. One shows that trivially D-completely regular mappings, i.e. submappings of fibrewise products of developable mappings coincide (up to homeomorphisms) with submappings of fibrewise products of semi-metrizable mappings.
We review some aspects of recurrence in topological dynamics and focus on two open problems. The first is an old one concerning the relation between Poincaré and Birkhoff recurrence; the second, due to the first author, is about moving recurrence. We provide a partial answer to a topological version of the moving recurrence problem.