On uniformly generalized Lipschitzian mappings.
We characterize those Tychonoff quasi-uniform spaces for which the Hausdorff-Bourbaki quasi-uniformity is uniformly locally compact on the family of nonempty compact subsets of . We deduce, among other results, that the Hausdorff-Bourbaki quasi-uniformity of the locally finite quasi-uniformity of a Tychonoff space is uniformly locally compact on if and only if is paracompact and locally compact. We also introduce the notion of a co-uniformly locally compact quasi-uniform space and show...
For Hausdorff topological monoids, the concept of a unitary Cauchy net is a generalization of the concept of a fundamental sequence of reals. We consider properties and applications of such nets and of corresponding filters and prove, in particular, that the underlying set of a given monoid, endowed with the family of such filters, forms a Cauchy space whose convergence structure defines a uniform topology. A commutative monoid endowed with the corresponding uniformity is uniform. A distant purpose...
The concept of a unitary Cauchy net in an arbitrary Hausdorff topological monoid generalizes the concept of a fundamental sequence of reals. We construct extensions of this monoid where all its unitary Cauchy nets converge.
In this paper we shall introduce notions of F-universality and F-e-universality for maps between compact Hausdorff spaces and explore the behaviour of these properties under the operation of composition of maps. We consider both the quest for conditions on maps f and g which would imply that their composition g o f is either F-universal or F-e-universal and the quest for consequences on f and g when the composition g o f is either F-universal or F-e-universal. In our approach F is an arbitrary class...
Suppose a metrizable separable space Y is sigma hereditarily disconnected, i.e., it is a countable union of hereditarily disconnected subspaces. We prove that the countable power of any subspace X ⊂ Y is not universal for the class ₂ of absolute -sets; moreover, if Y is an absolute -set, then contains no closed topological copy of the Nagata space = W(I,ℙ); if Y is an absolute -set, then contains no closed copy of the Smirnov space σ = W(I,0). On the other hand, the countable power of...
It is shown that for every integer n the (2n+1)th power of any locally path-connected metrizable space of the first Baire category is 𝓐₁[n]-universal, i.e., contains a closed topological copy of each at most n-dimensional metrizable σ-compact space. Also a one-dimensional σ-compact absolute retract X is found such that the power X^{n+1} is 𝓐₁[n]-universal for every n.
Eric van Douwen produced in 1993 a maximal crowded extremally disconnected regular space and showed that its Stone-Čech compactification is an at most two-to-one image of . We prove that there are non-homeomorphic such images. We also develop some related properties of spaces which are absolute retracts of expanding on earlier work of Balcar and Błaszczyk (1990) and Simon (1987).
In this paper we introduce two classes of functions called weakly preopen and weakly preclosed functions as generalization of weak openness and weak closedness due to [26] and [27] respectively. We obtain their characterizations, their basic properties and their relationshisps with other types of functions between topological spaces.