On Uniform Spaces where All Uniformly Continuous Functions are Bounded.
We characterize those Tychonoff quasi-uniform spaces for which the Hausdorff-Bourbaki quasi-uniformity is uniformly locally compact on the family of nonempty compact subsets of . We deduce, among other results, that the Hausdorff-Bourbaki quasi-uniformity of the locally finite quasi-uniformity of a Tychonoff space is uniformly locally compact on if and only if is paracompact and locally compact. We also introduce the notion of a co-uniformly locally compact quasi-uniform space and show...
For Hausdorff topological monoids, the concept of a unitary Cauchy net is a generalization of the concept of a fundamental sequence of reals. We consider properties and applications of such nets and of corresponding filters and prove, in particular, that the underlying set of a given monoid, endowed with the family of such filters, forms a Cauchy space whose convergence structure defines a uniform topology. A commutative monoid endowed with the corresponding uniformity is uniform. A distant purpose...
The concept of a unitary Cauchy net in an arbitrary Hausdorff topological monoid generalizes the concept of a fundamental sequence of reals. We construct extensions of this monoid where all its unitary Cauchy nets converge.
In this paper we shall introduce notions of F-universality and F-e-universality for maps between compact Hausdorff spaces and explore the behaviour of these properties under the operation of composition of maps. We consider both the quest for conditions on maps f and g which would imply that their composition g o f is either F-universal or F-e-universal and the quest for consequences on f and g when the composition g o f is either F-universal or F-e-universal. In our approach F is an arbitrary class...
Suppose a metrizable separable space Y is sigma hereditarily disconnected, i.e., it is a countable union of hereditarily disconnected subspaces. We prove that the countable power of any subspace X ⊂ Y is not universal for the class ₂ of absolute -sets; moreover, if Y is an absolute -set, then contains no closed topological copy of the Nagata space = W(I,ℙ); if Y is an absolute -set, then contains no closed copy of the Smirnov space σ = W(I,0). On the other hand, the countable power of...
It is shown that for every integer n the (2n+1)th power of any locally path-connected metrizable space of the first Baire category is 𝓐₁[n]-universal, i.e., contains a closed topological copy of each at most n-dimensional metrizable σ-compact space. Also a one-dimensional σ-compact absolute retract X is found such that the power X^{n+1} is 𝓐₁[n]-universal for every n.
Eric van Douwen produced in 1993 a maximal crowded extremally disconnected regular space and showed that its Stone-Čech compactification is an at most two-to-one image of . We prove that there are non-homeomorphic such images. We also develop some related properties of spaces which are absolute retracts of expanding on earlier work of Balcar and Błaszczyk (1990) and Simon (1987).