Characterizations and Metrization of Proper Analytic Spaces.
Some kinds of perfect spaces, including paracompact perfectly normal spaces and collectionwise normal perfect spaces, are characterized in terms of continuous selections avoiding supporting sets. A necessary and sufficient condition on a domain space for a selection theorem of E. Michael [Fund. Math. 47 (1959), 173-178] to hold is also obtained.
A topological space is said to be -Lindelöf [1] if every cover of by cozero sets of admits a countable subcover. In this paper, we obtain new characterizations and preservation theorems of -Lindelöf spaces.