Characterizations of certain general and reproductive solutions of arbitrary equations
Some kinds of perfect spaces, including paracompact perfectly normal spaces and collectionwise normal perfect spaces, are characterized in terms of continuous selections avoiding supporting sets. A necessary and sufficient condition on a domain space for a selection theorem of E. Michael [Fund. Math. 47 (1959), 173-178] to hold is also obtained.
A topological space is said to be -Lindelöf [1] if every cover of by cozero sets of admits a countable subcover. In this paper, we obtain new characterizations and preservation theorems of -Lindelöf spaces.
We prove that a continuum X is tree-like (resp. circle-like, chainable) if and only if for each open cover 𝓤₄ = {U₁,U₂,U₃,U₄} of X there is a 𝓤₄-map f: X → Y onto a tree (resp. onto the circle, onto the interval). A continuum X is an acyclic curve if and only if for each open cover 𝓤₃ = {U₁,U₂,U₃} of X there is a 𝓤₃-map f: X → Y onto a tree (or the interval [0,1]).