The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove that, for every countable ordinal α ≥ 3, there exists
countable completely regular spaces Xα and Yα such that the spaces Cp (Xα )
and Cp (Yα ) are borelian of class exactly Mα , but are not homeomorphic.
We give an example of a compact space X whose iterated continuous function spaces , are Lindelöf, but X is not a Corson compactum. This solves a problem of Gul’ko (Problem 1052 in [11]). We also provide a theorem concerning the Lindelöf property in the function spaces on compact scattered spaces with the th derived set empty, improving some earlier results of Pol [12] in this direction.
For a Tychonoff space , is the lattice-ordered group (-group) of real-valued continuous functions on , and is the sub--group of bounded functions. A property that might have is (AP) whenever is a divisible sub--group of , containing the constant function 1, and separating points from closed sets in , then any function in can be approximated uniformly over by functions which are locally in . The vector lattice version of the Stone-Weierstrass Theorem is more-or-less equivalent...
We present a few results and problems related to spaces of continuous functions with the topology of pointwise convergence and the classes of LΣ(≤ ω)-spaces; in particular, we prove that every Gul’ko compact space of cardinality less or equal to
is an LΣ(≤ ω)-space.
Currently displaying 1 –
6 of
6