The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 35

Showing per page

Selection principles and upper semicontinuous functions

Masami Sakai (2009)

Colloquium Mathematicae

In connection with a conjecture of Scheepers, Bukovský introduced properties wQN* and SSP* and asked whether wQN* implies SSP*. We prove it in this paper. We also give characterizations of properties S₁(Γ,Ω) and S f i n ( Γ , Ω ) in terms of upper semicontinuous functions

Some properties of g- and P-spaces

Kalamidas, N. (1999)

Serdica Mathematical Journal

A γ-space with a strictly positive measure is separable. An example of a non-separable γ−space with c.c.c. is given. A P−space with c.c.c. is countable and discrete.

Some remarks providing discontinuous maps on some C p ( X ) spaces

S. Moll (2008)

Banach Center Publications

Let X be a completely regular Hausdorff topological space and C p ( X ) the space of continuous real-valued maps on X endowed with the pointwise topology. A simple and natural argument is presented to show how to construct on the space C p ( X ) , if X contains a homeomorphic copy of the closed interval [0,1], real-valued maps which are everywhere discontinuous but continuous on all compact subsets of C p ( X ) .

Spaces not distinguishing convergences

Miroslav Repický (2000)

Commentationes Mathematicae Universitatis Carolinae

In the present paper we introduce a convergence condition ( Σ ' ) and continue the study of “not distinguish” for various kinds of convergence of sequences of real functions on a topological space started in [2] and [3]. We compute cardinal invariants associated with introduced properties of spaces.

Spaces of continuous characteristic functions

Raushan Z. Buzyakova (2006)

Commentationes Mathematicae Universitatis Carolinae

We show that if X is first-countable, of countable extent, and a subspace of some ordinal, then C p ( X , 2 ) is Lindelöf.

Currently displaying 1 – 20 of 35

Page 1 Next