The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 479

Showing per page

A characterization of dendroids by the n-connectedness of the Whitney levels

Alejandro Illanes (1992)

Fundamenta Mathematicae

Let X be a continuum. Let C(X) denote the hyperspace of all subcontinua of X. In this paper we prove that the following assertions are equivalent: (a) X is a dendroid, (b) each positive Whitney level in C(X) is 2-connected, and (c) each positive Whitney level in C(X) is ∞-connected (n-connected for each n ≥ 0).

A class of continua that are not attractors of any IFS

Marcin Kulczycki, Magdalena Nowak (2012)

Open Mathematics

This paper presents a sufficient condition for a continuum in ℝn to be embeddable in ℝn in such a way that its image is not an attractor of any iterated function system. An example of a continuum in ℝ2 that is not an attractor of any weak iterated function system is also given.

A classification of inverse limit spaces of tent maps with periodic critical points

Lois Kailhofer (2003)

Fundamenta Mathematicae

We work within the one-parameter family of symmetric tent maps, where the slope is the parameter. Given two such tent maps f a , f b with periodic critical points, we show that the inverse limit spaces ( a , f a ) and ( b , g b ) are not homeomorphic when a ≠ b. To obtain our result, we define topological substructures of a composant, called “wrapping points” and “gaps”, and identify properties of these substructures preserved under a homeomorphism.

Currently displaying 1 – 20 of 479

Page 1 Next