The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2181 – 2200 of 4977

Showing per page

ℓ²-homology and planar graphs

Timothy A. Schroeder (2013)

Colloquium Mathematicae

In his 1930 paper, Kuratowski proves that a finite graph Γ is planar if and only if it does not contain a subgraph that is homeomorphic to K₅, the complete graph on five vertices, or K 3 , 3 , the complete bipartite graph on six vertices. This result is also attributed to Pontryagin. In this paper we present an ℓ²-homological method for detecting non-planar graphs. More specifically, we view a graph Γ as the nerve of a related Coxeter system and construct the associated Davis complex, Σ Γ . We then use a...

L²-homology and reciprocity for right-angled Coxeter groups

Boris Okun, Richard Scott (2011)

Fundamenta Mathematicae

Let W be a Coxeter group and let μ be an inner product on the group algebra ℝW. We say that μ is admissible if it satisfies the axioms for a Hilbert algebra structure. Any such inner product gives rise to a von Neumann algebra μ containing ℝW. Using these algebras and the corresponding von Neumann dimensions we define L ² μ -Betti numbers and an L ² μ -Euler charactersitic for W. We show that if the Davis complex for W is a generalized homology manifold, then these Betti numbers satisfy a version of Poincaré...

La conjecture de Baum-Connes pour un feuilletage sans holonomie de codimension un sur une variété fermée.

Marta Macho Stadler (1989)

Publicacions Matemàtiques

In [C2], Baum-Connes state a conjecture for the K-theory of C*-algebras of foliations. This conjecture has been proved by T. Natsume [N2] for C∞-codimension one foliations without holonomy on a closed manifold. We propose here another proof of the conjecture for this class of foliations, more geometric and based on the existence of the Thom isomorphism, proved by A. Connes in [C3]. The advantage of this approach is that the result will be valid for all C0-foliations.

La décomposition dynamique et la différentiabilité des feuilletages des surfaces

Gilbert Levitt (1987)

Annales de l'institut Fourier

Soit un feuilletage singulier d’une surface compacte M . Pour analyser la dynamique de , on décompose M de façon canonique en sous-surfaces bordées par des courbes transverses à  : les composantes de la récurrence de (ensembles quasiminimaux) sont contenues dans les “régions de récurrence” et peuvent être étudiées séparément; par contre dans les autres régions, dites “régions de passage”, la dynamique est triviale. On propose ensuite une définition des feuilletages singuliers de classe C r sur...

La géométrie différentielle dans la catégorie P L

Howard Osborn (1973)

Annales de l'institut Fourier

La catégorie des fibrés vectoriels sur les variétés M linéaires par morceaux se plonge dans une catégorie des classes d’équivalence [ I ] de faisceaux I de modules sur les faisceaux A ( M ) de germes des fonctions lissables, et on construit les classes p ( [ I ] ) H 4 * ( M ; R ) de Pontrjagin, vérifiant des axiomes habituels. Chaque variété M possède un objet tangent [ ξ ( M ) ] dans cette catégorie, et p ( [ ξ ( M ) ] ) est la classe totale de Pontrjagin associée à M .

Currently displaying 2181 – 2200 of 4977