The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2261 – 2280 of 4977

Showing per page

Lie algebras of vector fields and codimension one foliations.

Tomasz Rybicki (1990)

Publicacions Matemàtiques

The main result is a Pursell-Shanks type theorem for codimension one foliations. This theorem can be viewed as a partial solution of a hypothetical general version of the theorem of Pursell-Shanks. Several propositions and lemmas on foliations are contained in the proof.

Lie group structures on groups of diffeomorphisms and applications to CR manifolds

M. Salah Baouendi, Linda Preiss Rothschild, Jörg Winkelmann, Dimitri Zaitsev (2004)

Annales de l’institut Fourier

We give general sufficient conditions to guarantee that a given subgroup of the group of diffeomorphisms of a smooth or real-analytic manifold has a compatible Lie group structure. These results, together with recent work concerning jet parametrization and complete systems for CR automorphisms, are then applied to determine when the global CR automorphism group of a CR manifold is a Lie group in an appropriate topology.

Lifting of homeomorphisms to branched coverings of a disk

Bronisław Wajnryb, Agnieszka Wiśniowska-Wajnryb (2012)

Fundamenta Mathematicae

We consider a simple, possibly disconnected, d-sheeted branched covering π of a closed 2-dimensional disk D by a surface X. The isotopy classes of homeomorphisms of D which are pointwise fixed on the boundary of D and permute the branch values, form the braid group Bₙ, where n is the number of branch values. Some of these homeomorphisms can be lifted to homeomorphisms of X which fix pointwise the fiber over the base point. They form a subgroup L π of finite index in Bₙ. For each equivalence class...

Light paths with an odd number of vertices in polyhedral maps

Stanislav Jendroľ, Heinz-Jürgen Voss (2000)

Czechoslovak Mathematical Journal

Let P k be a path on k vertices. In an earlier paper we have proved that each polyhedral map G on any compact 2 -manifold 𝕄 with Euler characteristic χ ( 𝕄 ) 0 contains a path P k such that each vertex of this path has, in G , degree k 5 + 49 - 24 χ ( 𝕄 ) 2 . Moreover, this bound is attained for k = 1 or k 2 , k even. In this paper we prove that for each odd k 4 3 5 + 49 - 24 χ ( 𝕄 ) 2 + 1 , this bound is the best possible on infinitely many compact 2 -manifolds, but on infinitely many other compact 2 -manifolds the upper bound can be lowered to ( k - 1 3 ) 5 + 49 - 24 χ ( 𝕄 ) 2 .

Currently displaying 2261 – 2280 of 4977