Displaying 2381 – 2400 of 4977

Showing per page

Mapping class group and the Casson invariant

Bernard Perron (2004)

Annales de l’institut Fourier

Using a new definition of the second and third Johsnon homomorphisms, we simplify and extend the work of Morita on the Casson invariant of homology-spheres defined by Heegard splittings. In particular, we calculate the Casson invariant of the homology-sphere obtained by gluing two handlebodies along a homeomorphism of the boundary belonging to the Torelli subgroup.

Mapping class group of a handlebody

Bronisław Wajnryb (1998)

Fundamenta Mathematicae

Let B be a 3-dimensional handlebody of genus g. Let ℳ be the group of the isotopy classes of orientation preserving homeomorphisms of B. We construct a 2-dimensional simplicial complex X, connected and simply-connected, on which ℳ acts by simplicial transformations and has only a finite number of orbits. From this action we derive an explicit finite presentation of ℳ.

Mass endomorphism, surgery and perturbations

Bernd Ammann, Mattias Dahl, Andreas Hermann, Emmanuel Humbert (2014)

Annales de l’institut Fourier

We prove that the mass endomorphism associated to the Dirac operator on a Riemannian manifold is non-zero for generic Riemannian metrics. The proof involves a study of the mass endomorphism under surgery, its behavior near metrics with harmonic spinors, and analytic perturbation arguments.

Matrix factorizations and link homology

Mikhail Khovanov, Lev Rozansky (2008)

Fundamenta Mathematicae

For each positive integer n the HOMFLYPT polynomial of links specializes to a one-variable polynomial that can be recovered from the representation theory of quantum sl(n). For each such n we build a doubly-graded homology theory of links with this polynomial as the Euler characteristic. The core of our construction utilizes the theory of matrix factorizations, which provide a linear algebra description of maximal Cohen-Macaulay modules on isolated hypersurface singularities.

Currently displaying 2381 – 2400 of 4977