Displaying 261 – 280 of 575

Showing per page

On some spaces which are covered by a product space

Izu Vaisman (1977)

Annales de l'institut Fourier

In this note, a topological version of the results obtained, in connection with the de Rham reducibility theorem (Comment. Math. Helv., 26 ( 1952), 328–344), by S. Kashiwabara (Tôhoku Math. J., 8 (1956), 13–28), (Tôhoku Math. J., 11 (1959), 327–350) and Ia. L. Sapiro (Izv. Bysh. Uceb. Zaved. Mat. no6, (1972), 78–85, Russian), (Izv. Bysh. Uceb. Zaved. Mat. no4, (1974), 104–113, Russian) is given. Thus a characterization of a class of topological spaces covered by a product space is obtained and the...

On some ternary operations in knot theory

Maciej Niebrzydowski (2014)

Fundamenta Mathematicae

We introduce a way to color the regions of a classical knot diagram using ternary operations, so that the number of colorings is a knot invariant. By choosing appropriate substitutions in the algebras that we assign to diagrams, we obtain the relations from the knot group, and from the core group. Using the ternary operator approach, we generalize the Dehn presentation of the knot group to extra loops, and a similar presentation for the core group to the variety of Moufang loops.

On Sp(2) and Sp(2) · Sp(1) structures in 8-dimensional vector bundles.

Martin Cadek, Jirí Vanzura (1997)

Publicacions Matemàtiques

Let ξ be an oriented 8-dimensional vector bundle. We prove that the structure group SO(8) of ξ can be reduced to Sp(2) or Sp(2) · Sp(1) if and only if the vector bundle associated to ξ via a certain outer automorphism of the group Spin(8) has 3 linearly independent sections or contains a 3-dimensional subbundle. Necessary and sufficient conditions for the existence of an Sp(2)- structure in ξ over a closed connected spin manifold of dimension 8 are also given in terms of characteristic classes.

On sprays and connections

Kozma, László (1990)

Proceedings of the Winter School "Geometry and Physics"

[For the entire collection see Zbl 0699.00032.] A connection structure (M,H) and a path structure (M,S) on the manifold M are called compatible, if S ( v ) = H ( v , v ) , v T M , locally G i ( x , y ) = y j Γ j i ( x , y ) , where G i and Γ j i express the semi-spray S and the connection map H, resp. In the linear case of H its geodesic spray S is quadratic: G i ( x , y ) = Γ j k i ( k ) y j y k . On the contrary, the homogeneity condition of S induces the relation for the compatible connection H, y j ( Γ j i μ t ) = t y j Γ j i , whence it follows not that H is linear, i.e. if a connection structure is compatible with a spray, then...

On stability of 3-manifolds

Sławomir Kwasik, Witold Rosicki (2004)

Fundamenta Mathematicae

We address the following question: How different can closed, oriented 3-manifolds be if they become homeomorphic after taking a product with a sphere? For geometric 3-manifolds this paper provides a complete answer to this question. For possibly non-geometric 3-manifolds, we establish results which concern 3-manifolds with finite fundamental group (i.e., 3-dimensional fake spherical space forms) and compare these results with results involving fake spherical space forms of higher...

On stability of Alexander polynomials of knots and links (survey)

Mikami Hirasawa, Kunio Murasugi (2014)

Banach Center Publications

We study distribution of the zeros of the Alexander polynomials of knots and links in S³. After a brief introduction of various stabilities of multivariate polynomials, we present recent results on stable Alexander polynomials.

On symplectic cobordism of real projective plane.

Malkhaz Bakuradze (2000)

Publicacions Matemàtiques

This note answers a question of V. V. Vershinin concerning the properties of Buchstaber's elements Θ2i+1(2) in the symplectic cobordism ring of the real projective plane. It is motivated by Roush's famous result that the restriction of these elements to the projective line is trivial, and by the relationship with obstructions to multiplication in symplectic cobordism with singularities.

On tame embeddings of solenoids into 3-space

Boju Jiang, Shicheng Wang, Hao Zheng, Qing Zhou (2011)

Fundamenta Mathematicae

Solenoids are inverse limits of the circle, and the classical knot theory is the theory of tame embeddings of the circle into 3-space. We make a general study, including certain classification results, of tame embeddings of solenoids into 3-space, seen as the "inverse limits" of tame embeddings of the circle. Some applications in topology and in dynamics are discussed. In particular, there are tamely embedded solenoids Σ ⊂ ℝ³ which are strictly achiral. Since solenoids are non-planar,...

Currently displaying 261 – 280 of 575