The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 154

Showing per page

Persistance des sous-variétés à bord et à coins normalement dilatées

Pierre Berger (2011)

Annales de l’institut Fourier

On se propose de montrer que les variétés à bord et plus généralement à coins, normalement dilatées par un endomorphisme sont persistantes en tant que stratifications a -régulières. Ce résultat sera démontré en classe C s , pour s 1 . On donne aussi un exemple simple d’une sous-variété à bord normalement dilatée mais qui n’est pas persistante en tant que sous-variété différentiable.

Perturbations of the metric in Seiberg-Witten equations

Luca Scala (2011)

Annales de l’institut Fourier

Let M a compact connected oriented 4-manifold. We study the space Ξ of Spin c -structures of fixed fundamental class, as an infinite dimensional principal bundle on the manifold of riemannian metrics on M . In order to study perturbations of the metric in Seiberg-Witten equations, we study the transversality of universal equations, parametrized with all Spin c -structures  Ξ . We prove that, on a complex Kähler surface, for an hermitian metric h sufficiently close to the original Kähler metric, the moduli space...

Pierrot's theorem for singular Riemannian foliations.

Robert A. Wolak (1994)

Publicacions Matemàtiques

Let F be a singular Riemannian foliation on a compact connected Riemannian manifold M. We demonstrate that global foliated vector fields generate a distribution tangent to the strata defined by the closures of leaves of F and which, in each stratum, is transverse to these closures of leaves.

Currently displaying 21 – 40 of 154