On the Self-Equivalences of a Space with Non-cyclic Fundamental Group.
We study properties of the signature function of the torus knot . First we provide a very elementary proof of the formula for the integral of the signature over the circle. We also obtain a closed formula for the Tristram-Levine signature of a torus knot in terms of Dedekind sums.
We study the simple connectivity at infinity of groups of finite presentation, and we give a geometric proof of its invariance under quasi-isometry in a special case.
The foliation of a Morse form on a closed manifold is considered. Its maximal components (cylinders formed by compact leaves) form the foliation graph; the cycle rank of this graph is calculated. The number of minimal and maximal components is estimated in terms of characteristics of and . Conditions for the presence of minimal components and homologically non-trivial compact leaves are given in terms of and . The set of the ranks of all forms defining a given foliation without minimal...