On universality of countable and weak products of sigma hereditarily disconnected spaces
Suppose a metrizable separable space Y is sigma hereditarily disconnected, i.e., it is a countable union of hereditarily disconnected subspaces. We prove that the countable power of any subspace X ⊂ Y is not universal for the class ₂ of absolute -sets; moreover, if Y is an absolute -set, then contains no closed topological copy of the Nagata space = W(I,ℙ); if Y is an absolute -set, then contains no closed copy of the Smirnov space σ = W(I,0). On the other hand, the countable power of...