Displaying 541 – 560 of 575

Showing per page

Open books on contact five-manifolds

Otto van Koert (2008)

Annales de l’institut Fourier

By using open book techniques we give an alternative proof of a theorem about the existence of contact structures on five-manifolds due to Geiges. The theorem asserts that simply-connected five-manifolds admit a contact structure in every homotopy class of almost contact structures.

Open Subsets of LF-spaces

Kotaro Mine, Katsuro Sakai (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Let F = ind lim Fₙ be an infinite-dimensional LF-space with density dens F = τ ( ≥ ℵ ₀) such that some Fₙ is infinite-dimensional and dens Fₙ = τ. It is proved that every open subset of F is homeomorphic to the product of an ℓ₂(τ)-manifold and = i n d l i m (hence the product of an open subset of ℓ₂(τ) and ). As a consequence, any two open sets in F are homeomorphic if they have the same homotopy type.

Optics in Croke-Kleiner Spaces

Fredric D. Ancel, Julia M. Wilson (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

We explore the interior geometry of the CAT(0) spaces X α : 0 < α π / 2 , constructed by Croke and Kleiner [Topology 39 (2000)]. In particular, we describe a diffraction effect experienced by the family of geodesic rays that emanate from a basepoint and pass through a certain singular point called a triple point, and we describe the shadow this family casts on the boundary. This diffraction effect is codified in the Transformation Rules stated in Section 3 of this paper. The Transformation Rules have various applications....

Orbit projections as fibrations

Armin Rainer (2009)

Czechoslovak Mathematical Journal

The orbit projection π M M / G of a proper G -manifold M is a fibration if and only if all points in M are regular. Under additional assumptions we show that π is a quasifibration if and only if all points are regular. We get a full answer in the equivariant category: π is a G -quasifibration if and only if all points are regular.

Orbit Structure of certain 2 -actions on solid torus

C. Maquera, L. F. Martins (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

In this paper we describe the orbit structure of   C 2 -actions of   2   on the solid torus   S 1 × D 2   having   S 1 × { 0 }   and   S 1 × D 2   as the only compact orbits, and   S 1 × { 0 }   as singular set.

Currently displaying 541 – 560 of 575