The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 641 –
660 of
4977
K. Habiro gave a neccesary and sufficient condition for knots to have the same Vassiliev invariants in terms of -moves. In this paper we give another geometric condition in terms of Brunnian local moves. The proof is simple and self-contained.
We calculate the mapping and obtain a generating system of its kernel. As a corollary, bounds on the codimension of fold maps from real projective spaces to Euclidean space are calculated and the rank of a singular bordism group is determined.
The notion of i-bounded geometry generalises simultaneously bounded geometry and the geometry of punctured torus Kleinian groups. We show that the limit set of a surface Kleinian group of i-bounded geometry is locally connected by constructing a natural Cannon-Thurston map.
Currently displaying 641 –
660 of
4977