Groups of piecewise linear homeomorphisms of the real line.
We consider groups of orientation-preserving real analytic diffeomorphisms of the circle which have a finite image under the rotation number function. We show that if such a group is nondiscrete with respect to the -topology then it has a finite orbit. As a corollary, we show that if such a group has no finite orbit then each of its subgroups contains either a cyclic subgroup of finite index or a nonabelian free subgroup.
Hass, Rubinstein, and Scott showed that every closed aspherical (irreducible) 3-manifold whose fundamental group contains the fundamental group of a closed aspherical surface, is covered by Euclidean space. This theorem does not generalize to higher dimensions. However, we provide geometric tools with which variations of this theorem can be proved in all dimensions.
For an exact differential form on a Riemannian manifold to have a primitive bounded by a given function , by Stokes it has to satisfy some weighted isoperimetric inequality. We show the converse up to some constants if has bounded geometry. For a volume form, it suffices to have the inequality ( for every compact domain ). This implies in particular the “well-known” result that if is the universal covering of a compact Riemannian manifold with non-amenable fundamental group, then the volume...
Arnold conjectured that every Legendrian knot in the standard contact structure on the 3-sphere possesses a haracteristic chord with respect to any contact form. I confirm this conjecture if the know has Thurston-Bennequin invariant . More generally, existence of chords is proved for a standard Legendrian unknot on the boundary of a subcritical Stein manifold of any dimension. There is also a multiplicity result which implies in some situations existence of infinitely many chords. The proof relies...
The purpose of this paper is to relate several generalizations of the notion of the Heegaard splitting of a closed 3-manifold to compact, orientable 3-manifolds with nonempty boundary.
Let be the following algorithmic problem: Given a finite simplicial complex of dimension at most , does there exist a (piecewise linear) embedding of into ? Known results easily imply polynomiality of (; the case is graph planarity) and of for all . We show that the celebrated result of Novikov on the algorithmic unsolvability of recognizing the 5-sphere implies that and are undecidable for each . Our main result is NP-hardness of and, more generally, of for all , with...
The exceptional compact symmetric spaces and admit cohomogeneity one isometric actions with two totally geodesic singular orbits. These singular orbits are not reflective submanifolds of the ambient spaces. We prove that the radial unit vector fields associated to these isometric actions are harmonic and minimal.