The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1861 – 1880 of 4977

Showing per page

Hodge–type structures as link invariants

Maciej Borodzik, András Némethi (2013)

Annales de l’institut Fourier

Based on some analogies with the Hodge theory of isolated hypersurface singularities, we define Hodge–type numerical invariants of any, not necessarily algebraic, link in a three–sphere. We call them H–numbers. They contain the same amount of information as the (non degenerate part of the) real Seifert matrix. We study their basic properties, and we express the Tristram–Levine signatures and the higher order Alexander polynomial in terms of them. Motivated by singularity theory, we also introduce...

Holonomie et cycle évanouissant

Guy Wallet (1981)

Annales de l'institut Fourier

On démontre que l’holonomie est non triviale au voisinage d’un cycle évanouissant au moyen d’un critère d’Imanishi et on donne une démonstration non standard de ce dernier.

Holonomie et feuilles exceptionnelles

Claude Lamoureux (1976)

Annales de l'institut Fourier

Dans le présent travail, nous obtenons plusieurs caractérisations de feuilles propres et de feuilles denses des feuilletages transversalement C 2 de codimension 1 de variétés indifféremment compactes et non compactes.Ces caractéristiques sont algébriques et concernent la structure des semi-groupes sécants d’homotopie et d’homologie que nous avons définis et utilisés ailleurs.Par l’intermédiaire de corollaires sur l’existence d’holonomie dans l’adhérence des feuilles exceptionnelles, nous en déduisons...

Holonomy groups of complete flat manifolds

Michał Sadowski (2007)

Banach Center Publications

We present short direct proofs of two known properties of complete flat manifolds. They say that the diffeomorphism classes of m-dimensional complete flat manifolds form a finite set S C F ( m ) and that each element of S C F ( m ) is represented by a manifold with finite holonomy group.

Holonomy, twisting cochains and characteristic classes

G. Sharygin (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

This paper contains a description of various geometric constructions associated with fibre bundles, given in terms of important algebraic object, the “twisting cochain". Our examples include the Chern-Weil classes, the holonomy representation and the so-called cyclic Chern character of Bismut and others (see [2, 11, 27]), also called the Bismut’s class. The later example is the principal one for us, since we are motivated by the attempt to find an algebraic approach to the Witten’s index formula....

Homeomorphism Groups and the Topologist's Sine Curve

Jan J. Dijkstra, Rachid Tahri (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

It is shown that deleting a point from the topologist's sine curve results in a locally compact connected space whose autohomeomorphism group is not a topological group when equipped with the compact-open topology.

Currently displaying 1861 – 1880 of 4977